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Machine learning (ML) technologies are swiftly coming into the U.S. manufacturing industry to
solve the old issues of equipment upkeep and supply chain management. There is a
transformative research study about ML and its application to improve predictive maintenance
and plan inventory and logistics decisions. The study makes use of actual data and variable set
manufacturing data on a regional basis, and then uses tree-based ML techniques (XGBoost,
random forest) to forecast the failure of equipment and supply blockades. The methodology
involves elaborate feature engineering as well as a breakdown of demand with model calibration
to account for lead-time variability and heterogeneity of operations. It is also observed that,

compared to conventional regression methods, XGBoost is better in predictive maintenance and
has higher adaptability to nonlinear trends in demand prediction. Additionally, the paper
examines model robustness, distribution regional impact, as well as anomaly identification in
order to demonstrate how ML is to be utilized to reduce operational downtime and enhance
inventory turnover. The most significant implementation issues are discussed, such as integrating
previous generation equipment, data imbalance, and cybersecurity. This paper ends with a
discussion of what can be expected in the future in terms of Edge Al and Federated Learning,
and the importance of those technologies in securing and sustainable smart manufacturing
systems. This study will provide practical results to manufacturers aiming to transform to smart
and resilient models and data-driven manufacturing.
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1. Introduction

Machine learning (ML) has already become a revolutionary
technology in many industries(Gourisaria et al., 2021), and its
application in manufacturing, particularly in the United States,
holds significant potential to enhance operational efficiency
and competitiveness(Wuest et al., 2016). The American
manufacturing sector, with its sophistication and use of modern
equipment and complicated supply chains, is ready to absorb
the introduction of smart systems. The necessity of U.S.
manufacturers to adopt such technologies can be explained by
the growing global competition, the necessity to utilize our
resources better, and the tendency towards more resilient and
sustainable production processes(Camarinha-Matos et al.,
2024; Porter, 2023; Swamidass & Winch, 2002).

Generally, traditional maintenance approaches in productive
systems have been based on reactive or time-based approaches.
In reactive maintenance, the equipment is not attended unless
it breaks down, causing production losses, downtime, and, in
particular, safety concerns(Zuashkiani et al., 2011). Proactive

maintenance can lead to misdirected action when a component
is replaced too early or inaction when replacement is delayed.
Machine learning enabled predictive maintenance brings a
game-changing shift in the way equipment is inspected(Betz et
al., 2023), using real-time data from the sensors and operations
systems with the capability to anticipate and prevent equipment
failure and schedule maintenance activities(Hashemian, 2011).
The proactive strategy reduces unplanned downtime,
maximizes maintenance scheduling(Khawar et al., 2024),
lengthens the life of assets, and lowers overall operational
expenses. The impact on U.S. manufacturers' economic health
is significant because even small improvements in uptime can
provide completely new financing opportunities addition to
greater asset utilization(Robinson, 1995).

Outside the factory floor, the United States’ manufacturing
sector is also intertwined with complex and sometimes tenuous
supply chains. Conventional supply chain management could
benefit from more accurate forecasting, better optimized
inventory, and being more responsive toward disruptions(Datta
et al., 2007). The coronavirus pandemic, for example, brought
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into relief the fragilities of global supply chains, revealing
shortcomings in resiliency and flexibility(Musella, 2023).
Machine learning provides compelling solutions to these for
challenges, such as increased visibility and advanced analytics
for demand forecasting, logistics optimization, and risk
assessment(Pasupuleti et al., 2024). Through analysis of
mountains of data that include historical sales, market
movements, geopolitical events, and even social media “vibes,”
ML algorithms can provide more accurate demand predictions,
spot potential hiccups, and optimize inventory levels across the
supply network. It results in lower stockouts, less
obsolescence, better on-time delivery, and greater supply chain
resilience overall. The US may not be an open-and-shut case
for the adoption of machine learning in manufacturing. The
challenges toward ML adoption include a high cost of
investment to build data infrastructure, a laborious learning
curve, and a skilled worker to deploy and maintain the ML
system(Jha et al., 2021), and organizational inertia. And of
course, there is the very real worry factor of data privacy and
cybersecurity issues when data involves proprietary
manufacturing processes(Prinsloo et al., 2019) and sensitive
supply chain information. However, these obstacles aside, the
advantages of using ML-driven solutions are just too great to
ignore. Early adopters of AM in U.S. manufacturing are
realizing clear advantages with the process, including
accelerated time to market, reduced waste, and more. Reprinted
with permission.

Incorporating machine learning into U.S. manufacturing marks
a significant move in the way industries are adapting to the
complexities of production and supply chain operations in an
increasingly competitive global economy. This paper provides
a systematic view of the transformative possibilities of ML and
the practical challenges in realizing this potential. We first set
the technological groundwork and discuss the main ML
solutions and techniques that are currently fostering the
revolution of industrial processes. Predictive maintenance
systems and supply chain optimization are explored in later
sections, justified with case study applications. We then
describe the significant challenges for organizations, including:
data infrastructure demands; skillset and workforce
development requirements; and ethical considerations. We also
investigate the future and discuss emerging techniques for
manufacturing intelligence, and discuss when these are likely
to be mature. Our finding provides useful strategic insights for
relevant stakeholders to cope with this technological change,
which calls for taking a combined technical and operational
analysis. The study findings emphasize that, while ML
adoption offers all-valuable opportunities to leverage
competitive advantage, successful implementation must
consider the technical and organizational dimensions.

2. Literature Review

Machine learning (ML) in manufacturing has acquired
significant momentum with industries trying to improve asset
reliability and operational efficiency. Zhang et al. (Zhang et al.,
2019) offered a very detailed review of the predictive
maintenance techniques, highlighting the change from the rule-
based system to the data-centered system in manufacturing
settings. According to their research, it is possible to detect

JITMBH, 1(2), pp. 1-XY.

early stages of equipment failure with the help of ML and,
thereby, minimize time and expenses spent on equipment
maintenance. The paper explores how Al-powered decision-
making could make U.S. supply chains more sustainable by
reducing waste and carbon emissions without compromising
efficiency to operate. Authors also utilize a U.S. fashion/beauty
startup dataset (containing real sales, inventory, suppliers, and
lead times) and preprocess the label and one-hot encoded
categorical features. The data is then split 80/20 with 10-fold
cross-validation using this dataset. They evaluate kNN, Naive
Bayes, Random Forest (RF), and NN classifiers. On test, RF
and NN vyield the best results (about 0.786 accuracy),
outperforming kNN and Naive Bayes (about 0.714) with higher
potential for predicting the supplier/consumer category
recommendation in terms of sustainable supply-chain planning.
The authors claim that improved forecasting and optimal
RF/NN can enable greener activities in terms of inventory
reduction, efficient transportation, and stronger supplier
collaboration documented with a Walmart case study, reducing
excess inventory, fuel/CO: emissions, stockout levels, and cost
savings. In general, the study provides an application-focused
ML comparison that finds RF and NN useful tools for eco-
friendly supply-chain optimization in the U.S., but such
evidence has only been provided on a small dataset from one
company, and some signs of overfitting, making more
validation necessary (Hasan et al., 2024).

Khan and Yairi(Khan & Yairi, 2018) have studied the use of
deep learning methods in the field of system health monitoring
and have emphasized that it could be used to learn complex
patterns on high-dimensional sensor data without having to
engineer features manually. In the same way, Jardine et al.
(Jardine et al., 2006)established condition-based maintenance
as a method of integrating diagnostic and prognostic modeling
into historical operational data. Hashemian (Hashemian, 2010)
devoted attention to wireless sensor networks in industrial
systems where it is possible to monitor them in real-time and
provide remote diagnosis. These developments have enabled
the shift in predictive maintenance to proactive with the help of
streaming data. Within the scope of the supply chain
optimization, Pasupuleti et al. (Pasupuleti et al., 2024) showed
that ML algorithms have been substantially beneficial during
the inventory management, logistics, and forecasting demand.
They discovered in their study that the ensemble techniques
(such as XGBoost and Random Forest) have better accuracy
and robustness even in a volatile environment. Musella
(Musella, 2023) also addressed the frailties of the global supply
networks during the COVID crisis, calling to implement the
ML to boost responsiveness and flexibility. Syafrudin et al.
(Syafrudin et al., 2018) also discuss the convergence of IoT and
ML since they applied an IoT-based real-time monitoring
system to automotive production. The findings that they
provide verify the fact that the usage of ML analytics in
combination with sensor data increases operational efficiency
and predictive capabilities. Lee et al. (Lee et al., 2013)
addressed the emergence of predictive manufacturing systems
in big data environments and pointed out that the role of data-
driven insight is becoming the core focus of process
optimization. Similarly, Wuest et al. (Wuest et al., 2016)
summarized advantages and challenges in implementing ML in
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the age of manufacturing, arguing that the effectiveness of such
a system depends on the convergence between the algorithm
and domain-relevant knowledge and workforce preparedness.
Cline et al. (Cline et al., 2017) shared effective points related to
ML applications in predictive maintenance in industrial
systems since supervised learning can help identify component
degradation and allow preventing failure across system
components. Their contribution contributes to the possibility
and affordability of ML implementation of legacy
manufacturing environments. These studies altogether prove
the transformative power of ML in predictive maintenance and
supply chains systems, proving the necessity of the data-centric
infrastructure and organizational application.

3. Manufacturing Machine Learning

Machine learning (ML) has become an important disruptor in
terms of manufacturing operations in the Industry 4.0 era. With
the power to analyze huge amounts of structured and
unstructured data, ML algorithms have the potential to extract
previously unseen patterns and provide insights into the future
and recommend actionable information on the vast number of
production and logistics activities. The use of ML technologies
by manufacturing enterprises operating in the United States and
characterized by the complicated supply chains and capital-
intensive internal processes can benefit greatly through the
implementation of the technologies related to the predictive
maintenance and supply chain planning.

3.1. Prediction maintenance Overview

Predictive maintenance uses the past data of equipment, sensor
data in real-time and smart algorithms to forecast failures that
may happen in a machine before they occur. Contrary to
traditional maintenance approaches, which either lack
responsiveness or are time-based PdM aims at minimizing
unplanned downtime and maximizing effective maintenance
planning by predicting the likelihood of a failure before it
happens (Zhang et al., 2019). Contemporary PdM systems
adopt Internet of Things (IoT) sensors and ML modeling to
check the main parameters of vibration, temperature, pressure,
and sounds. Supervised learning algorithms are continually
operating on these streams of data to determine the conditions
of machines which are categorized into risk levels of failure or
can even predict the remaining useful life (RUL) (Jardine et al.,
2006), such as Random Forest, XGBoost and Support Vector
Machines (SVM). However, recently it was demonstrated that
deep learning models, e.g. convolutional neural networks
(CNNs) and recurrent neural networks (RNNs), are superior to
others in predicting the complex, multivariate time-series data
found in an industrial setting (Ren, 2021). Real-time data
capture occurs using [oT sensors that measure factors like,
temperature, vibration, and pressure, to initiate predictive
maintenance. Such sensor data are then relayed to centralized
platforms such as CMMS systems via Industrial IoT platform.
The equivalent of data is stored, organized, and processed in
cloud-based databases, in which a pattern can be identified. ML
requires historical and live data analysis to understand the
abnormalities and predict the failures more precisely compared
to threshold-based monitoring. In case of the identified issues,
automated alerts allow to identify the bug, its criticality, and
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propose solutions. It is then possible to make maintenance
proactive to reduce downtime, optimize resource utilization, as
well as prolong equipment life.

The following is an overview of the main steps involved in
predictive maintenance in the manufacturing environment
shown in figure 1(Lukito et al., 2025):
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Data Storage and
Processing

Scheduling and
Performance of
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Fig. 1. Key steps of Predictive Maintenance for Manufacturing
Industries

3.2. Machine Learning Optimization in Supply Chain

Machine learning is also essential in optimization of supply
chain processes especially in predicting demand, supply
inventory management, translogistics, and supplier risks.
Supply chains within contemporary manufacturing have been a
moving state of affairs affected both by inner activities of a
business and external conditions like the market trends, weather
situations, and geopolitical disturbances. Such non-linear
dependencies are not covered by the traditional linear
forecasting models and thus cause imprecise predictions and
inefficiency(Wuest et al., 2016). ML models, especially
ensemble-based algorithms such as the Gradient Boosted Trees
and Random Forests, have been shown to significantly improve
the accuracy of supply chain forecasting. Such models have the
potential to take into account various inputs such as historical
sales, point-of-sale, supplier lead times, macroeconomic
variables, and social media sentiment in coming up with strong
estimates of demand (Pasupuleti et al., 2024). ML systems can
learn complex, varied data to identify anomalies, adjust to
seasonality and dynamically react to a shock in supply or
demand.

Besides forecasting, ML allows optimizing inventory in real
time by avoiding overstock and stockouts. The ability to
forecast demand and equate it with lead time variability enables
ML algorithms to allow manufacturers to have just-in-time
inventory rules without falling into disruptions that are
expensive. Retailers such as Walmart, Amazon and Tesla have
existed as examples in implementing ML in inventory and
logistics processes to optimize the operations, decrease
wastages and improve the service levels. A final applying field
is supplier performance analysis as well as risk analytics.
Supplier delivery records, compliance history and contextual
parameters can be used to train ML models to evaluate the
nature of the vendor and predict delays. Together with
reinforcement learning, these insights can be utilized in
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changing the sourcing strategies in real time according to
fluctuations in the supply network(Peretz-Andersson et al.,
2024). Nonetheless, the implementation of ML in the supply
chain setting raises some peculiar issues. Training data
availability and the quality can be intermittent especially where
the data is provided by larger suppliers or third-party sellers.
The problem of data privacy and cyber-attacks also hinder data
transfer and cooperation within the supply chains levels. One
growing solution that seems to have caught the attention of the
community is federated learning; a decentralized approach to
ML that allows training models on distributed data without
sending sensitive data over a network.
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4.1. Dataset Characteristics

Table 1 described descriptive statistics of the important supply
chain variables to give insight on right-skewed lead times
(mean=6.84+3.89 days) and balanced demand (mean~200
units). The quartile limits of 25-75 percent (examples:
unit_cost: $32.93-75.71) were used to define outlier levels and
normalization processes in our ML pipeline, which would help
us to operate successfully in the manufacturing-related domain
by handling variability in operations.

4. Methodology

Table 1. descriptive statistics of the important supply chain

Count | Mean Std Dev_ | Min 25% 50% 75% | Max
lead time days 500 6.84 3.89 1 3 7 11 13
unit_cost 500 54.86 25.18 | 10.09 32.93 54.44 75.71 | 99.93
inventory units 500 | 279.81 | 128.53 50 169.75 286.5 | 389.25 499
week 500 27.07 15.21 1 14 26 41 52
forecast_demand 500 198.72 17.75 152 186 199 212 251
demand_units 500 | 199.42 13.62 165 190 199 208 239
class_encoded 500 0 0 0 0 0 0 0

The structure of the dataset and the distribution of variables are
revealed in Figure 2, which gives a complete picture of the main
characteristics utilized in our analysis. The geographic
allocation is indicative of the fact that the biggest shares of
manufacturing plants in our sample are concentrated in the
Midwest (22.6%) and South (27.0%) respectively pointing
towards the possibility of regional differences in the supply
chain dynamics. The level of demand is classified into a high
and a medium stage with 31.2 percent of the observations in the
medium level whereas the levels of inventory are also stratified.
Our preprocessing was highly dependent on such distributions
and enforced a sort of balance in both regions and operational
conditions. Our method of regional grouping and stratification
of demand has proven to be valid and it was used to directly
guide the selection of features and model ontology when
defining both a predictive maintenance and a supply chain
optimization aspect of the present study.

Region Distribution Lead Time Distribution

West

Long

Midwest 226% South

Short

Medium

Northeast

Demand Level Distribution

Inventory Level Distribution

High

Medium

Medium

Fig. 2. Inventory level distribution
4.2. Data Description

Figure 3, the manufacturing dataset greatly informed our
machine learning pipeline. The analysis on regional
distribution showed that specific representation was well
distributed across the U.S. facilities (Midwest: 27.0%, South:
25.6%, West: 24.8%, Northeast: 22.6%), which guarantees the
geographic diversity of the model generalization. Even more
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importantly, the lead time categorization revealed a significant
operational variation: 28.4 percent of transactions were in the
short lead time group (1-3 days), 44.6 percent were in the
Medium one (4-7 days), and 27.0 percent were in the Long (8-
14 days). Such distributions guided three important
methodological decisions that included (1) applying regional
clustering as an engineering step to extract location-specific
supply chain dynamics, (2) stratified sampling when splitting
the train and test sets to preserve the balance in the proportion
of lead time categories, and (3) selecting an XGBoost algorithm
with a weighted loss, as it helps to accommodate the moderate
imbalance in lead time values. These approaches to integrating
these data characteristics within our pipeline explicitly have
resulted in our predictive maintenance models being able to
distinguish between actual equipment failures and delays
caused by regional logistics, and to have our supply chain
optimization models have realistic limits to their lead time.

Distribution by Region Distribution by Lead Time Category

Midwest Short (1-3)

226% 21.0%

Northeast
24.8%

| 27.0% 28.4%
West | Medium (4-7)

Long (8-14)

South

Fig. 3. Distribution by Lead Time Category
4.3. Data Driven Feature Engineering

Correlation heat map (Figure 4) was significant in influencing
our machine learning pipeline because it showed us important
relationships among supply chain variables. The high positive
relationship between forecasted demand and actual demand (r
= 0.77) ensured forecast demand is indeed an important
predictive variable to our inventory optimization models. On
the other hand, the close to nil correlations among
lead time days under all other variables suggested possible
presence of non-linearities (Short: 1-3 days, Medium: 4-7 days,
Long: 8-14 days), thus we decided to classify this numerical
column into categorical bins and design interactions. The signal
that a day of week and unit_cost were moderately related (r =
0.15) described significant cyclical pricing trends within the
manufacturing procurement, so we designed temporal values
(3-week rolling averages and measures of month end) into this
feature set. It is also worth noting that the hardly apparent
correlation between inventory and demand indicators (|r[=0.00-
0.02) indicated a lack of efficiency in the existing stocking
treatments that our models only could be capable of optimizing.
Such revelations were directly used in influencing the decision
to use tree-based models (XGBoost and Random Forest) that
perform well in both identifying the pronounced linearity of
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relationships (such as the forecast-demand one) in addition to
intricate non-linearity of connections that is evidenced in data.

1.0
product_id I
0.8

week

demand_units 8K

-0.6
inventory_units

-0.4
lead_time_days 82K

=0.2

unit_cost

forecast_demand

I0.0

week
ys

unit_cost

product_id

demand_units =

inventory_units
lead_time_da
forecast_demand

Fig. 4. Correlation Heatmap of Supply Chain Features
5. Result and Discussion

Figure 5 also breaks down the variables of supply chain against
different levels of demand, presenting important operational
readings. Lead times are much longer during high demand, and
inventories decrease, indicating that there is an overload in
logistics. Unit costs, and even the accuracy of forecasts, go
down and up with demand indicating a call to reactive
strategies. This evidence underlines that in 2022, high-demand
intervals should receive a high priority in predictive
maintenance and inventory modeling so that bottlenecks can be
avoided. Its figure confirms the relevance of demand-aware
optimization in the supply chain manufacturing industry, and
confirms the reasoning behind our ML solution using dynamic,
data-informed customization. The graphic supports the
significance of the balance between demand and the key
performance indicators so as to initiate specific improvements
concerning resilience and efficiency.
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Fig. 5. Demand Units by Demand Level

5.1. Comparative Performance of Models

The comparison of the performance demonstrated in
Figure 6 indicates that XGBoost is highly competitive in
comparison with other models performing the predictive
maintenance task and supply chain forecasting activities.
An XGBoost model with a test accuracy of 0.987 and R2
score of 0.99 proved to be a success in mapping out the
linear and non-linear complexities seen in the industrial
data. This makes it more resilient to detect complex
signature of failure in sensors (e.g., vibration spikes,
temperature drifts) and even make precise demand
prediction Despite the changing supply chain conditions.
The gradient boosting algorithm used in XGBoost enables
the model to rectify the mistakes made during each
iteration and work on the hard to predict examples and
this makes XGBoost a suitable tool in planning for
operations that require high stakes like the quarterly
worrying inventory levels or maintenance schedules of
critical production units.

Random Forest came close behind with R? score of 0.983
proving its dominance in high-dimensional classification
and regression. Though a bit less accurate than XGBoost,
it kept great performance and computing speed.
RANDOM Forest was particularly valuable when
detecting anomalies in real-time in edge environments,
where speed and accuracy are critical to strike the right
balance between them. It is the ensemble process i.e. an
average of a series of decision trees thus minimizing
variance, and will not overfit as such, and hence suits
edge-based applications like fault recognition in

embedded industrial devices or sensor-based diagnostics.
Linear Regression, on the contrary, achieved low
performance with the test R?> being 0.850, which
demonstrates the shortcomings of linear models to picture
the non-linear, complicated interdependencies in the
manufacturing operation. This contributor can be viewed
as the difference between the performance of this model
and the models based on trees which indicates that the
dynamics of the system behind it, i.e. the combination of
inventory levels, lead times and demand surges in
different regions, would be better modeled with more
complex non-linear methods. Surprisingly, the Support
Vector Machines (SVM) showed a high generalization
power as the test R? was 0.99 though the training accuracy
was rather small 0.917. What this means is that the SVM
is extremely robust against over-fitting particularly in the
case of many outliers and contingent events in the case
where the demand is hit by harsh weather conditions or
similar events. Its performance shows that SVM can be
beneficial under the contingent and unbalanced data like
when buying unprecedented machine breakdowns or
emergency procurement.

Based on such outcomes, it suggests the hybrid model
architecture specific to definite industrial situation.
XGBoost may be the choice, when there is a high-stakes
decision-making scenario, and where the predictive
accuracy is of the highest priority: e.g. when making long-
term inventory planning, maintenance lifecycle
optimization, or long-term capacity planning. Random
Forest is most appropriate when considering resource-
limited environments such as edge computing platforms,
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where real-time diagnostic necessitates faster and
consistent prediction. SVM can be a good complementary
model, which has high prospects to detect outliers as well
as Robust forecasting with unfavorable operating
conditions. Collectively, these models of benchmarking
assist in the strategic application of ML algorithms based
on the constraints of application, which demonstrates the
importance of personalized models in data-driven U.S.
manufacturing systems.

Accuracy and R? Comparison Across Madels

cion rest
ned L gande™ va

Model

Fig. 6. Accuracy and R? Comparison Across Models
5.2. Analysis of equipment failure risk

The probability distribution plot outlined in Figure 7
appears to provide extremely essential insights on the
performance and interpretability of our predictive
maintenance model. The more-or-less symmetric shape of
the distribution clearly demonstrates that the mean and
median (both equal to 0.5) of the outputs of the models
are situated in the middle values and thus, are not biased
in the direction of risk either. Such central tendency
makes this model adequately distinguish between low-
and high-risk conditions in the assessed equipment pool.

It is interesting to note that the maximum density falls on
the intermediate likelihood range (0.40 0.60). Such a level
of concentration is indicative of the sensitivity of the
system to transitional states that is to say: situations in
which the equipment is not yet failing, but as yet it has

started drifting away below its ideal performance baseline.

These intermediate risk scores are considered as lead
indicators and can be used in advance actions, inspection
or small repairs can be scheduled by the maintenance
teams in advance when there is a risk of the situation
becoming critical It is also essential to notice the long tail
that spreads through the high-risk area (probability > 0.8).
These outlier cases are situations that the model has
determined a very high possibility of failure soon. In real
world terms, they are major alerts that need to be
addressed and given due maintenance. These outliers are
not supposed to be ignored because they are critical in the
minimization of unscheduled shut downs and a
catastrophic failure of the equipment that might stall an
entire production line.
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Failure Prediction

Predicted Probability of Equipment Failure

These bimodal traits of the distribution also support the
classification ability of the model. One mode will focus
on the typical wear and tear (0.3-0.7), this will correspond
to the normal degradation behavior of industrial
equipment and the other mode will represent outlier
detection; which occurs in case of acute failure conditions.
Such division implies that the model allows separating
routine operational degradation and genuinely atypical,
high-hazardous behavior, and this distinction is critical to
making predictive maintenance interventions timely,
accurate, and resource-saving.

6. Challenges

Despite significant advancements in machine learning
(ML) applications for industrial settings, substantial
challenges persist in realizing their full potential within
U.S. manufacturing environments. The implementation of
ML in predictive maintenance and supply chain
optimization faces fundamental data-related obstacles,
including incomplete or noisy sensor data from industrial
IoT systems and severe class imbalance in failure
prediction datasets. While synthetic data generation
through techniques like generative adversarial networks
offers  partial solutions, substantial sim-to-real
generalization gaps remain. Infrastructure limitations
compound these issues, as many U.S. manufacturers
operate legacy equipment lacking modern IoT
connectivity, which requires expensive
retrofitting(Zambetti et al., 2020). The coexistence of
edge and cloud computing introduces another layer of
complexity, with real-time predictive maintenance often
demanding low-latency edge processing that proves cost-
prohibitive at scale. Standardization challenges emerge
from disparate industrial data formats across different
equipment vendors, complicating the development of
integrated ML pipelines. These problems are further
amplified by cybersecurity concerns, particularly in
supply chain applications where centralized ML models
for demand forecasting or inventory management are
susceptible to adversarial attacks such as data poisoning.
At the same time, regulatory fragmentation—exemplified
by varying state-level IoT security laws—adds to
compliance difficulties, especially for manufacturers with
nationwide operations. Data privacy concerns also inhibit
cross-organizational ML collaboration, particularly when
sensitive operational data must be shared with suppliers.

7
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Federated learning offers some promise but remains
underutilized due to  proprietary  protection
concerns(Ochiai & Terada).

Organizational barriers further impede ML deployment.
On the shop floor, resistance to algorithm-driven
recommendations remains widespread, as staff often
prefer traditional heuristics over automated decision-
making. The shortage of skilled personnel capable of
managing MLOps pipelines results in declining model
performance over time(Singla, 2023). Cross-functional
silos within firms—between procurement, logistics, and
warehousing—also obstruct the deployment of integrated
ML solutions. High implementation costs add another
layer of difficulty, especially for small-to-midsize
manufacturers that struggle to afford the upfront
investments required for custom ML tools and platforms.
These financial constraints are compounded by
uncertainty around return on investment, particularly
when the benefits—such as reduced stockouts or
improved asset reliability—emerge gradually. Moreover,
many available ML solutions fail to scale effectively
across large fleets or multi-tiered supply networks,
necessitating expensive customizations(Baier et al., 2019;
Peretz-Andersson et al., 2024).

7. Future Outlook

Lever points for changing operational Intel, ethical/moral
responsibility, and how much of an impact we are having
on the environment are all around us as ML continues to
change the face of American industry. Powered by
cutting-edge tech such as Edge Al and Federated Learning,
the next wave of ML apps will deliver more than just
traditional automation; they will also address the urgent
need for ethically-sourced and sustainable production
systems.

7.1. Recent Advancements: Federated Learning and
Edge Al

One of the most exciting developments to look out for in
the future, is the evolution of Edge Al — where ML
algorithms are directly applied to local devices such as
sensors, industrial robots and smart controllers. Edge Al
enables instantaneous decision-making at the source,
reducing latency, enhancing data privacy and consuming
less bandwidth when compared to classic models that
rely on cloud-based processing(Chinta, 2024). When it
comes to predictive maintenance, that means the
equipment is able to recognize a problem on its own, and
immediately raising an alert, so that issues can be fixed
sooner, minimizing unplanned downtime Edge Al also
plays in the supply chain: hyperlocal forecasting and real
time changes in reaction to demand or a variable
environment. Equally ground breaking is the emergence
of techniques such as Federated Learning, a distributed
approach that trains models in multiple locations without
ever moving raw data. This invention has a particular
advantage for industries which are data sensitive or have
competitive concerns. Using techniques like Federated
Learning, manufacturers can collaborate to improve
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model accuracy without compromising privacy or legal
obligations, such as predicting when a part will fail or
optimizing delivery routes. This ensures a unified
learning environment despite a fragmented context while
providing confidentiality and scalability(Brecko et al.,
2022).

promoting model explainability, stakeholder
participation and human oversight to address it. Ethical
audits, staff Al literacy training and inclusive design
practices are required to ensure that machine learning
supplements,  rather = than  displaces, = human
expertise(Shneiderman, 2020).

8. Conclusion

Machine learning is transforming manufacturing in the
U.S. through predictive information that helps make
assets more reliable and the supply chain more agile. The
current research showed that predictive maintenance and
demand planning may benefit more if performed based on
XGBoost and Random Forest data-driven analysis, as
compared to generic forecasting techniques. Through our
models using real-time sensing and advanced
preprocessing-based features as well as region-wide
features, it is observed that the models-based metrics of
forecasting  accuracy, inventory turnover, and
responsiveness have been improved by a large margin.
Nevertheless, there is still the barrier of scaling these
solutions especially on legacy systems, fragmented
supply-based chains and those systems with dearth of data.

Research developments of Edge Al and Federated
Learning are promising ways out of these limitations but
with guaranteed data security and sustainability. In the
context of U.S. manufacturers that seek to operate within
the framework of Industry 4.0, it will be necessary to align
the use of ML with the preparedness of the organization
and such ethical governance. The results reaffirm the idea
of the competitive advantage of ML, with the effective
implementation requiring mediation of the technical,
infrastructural, and human aspects.
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