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The global spread of COVID-19 has exposed vulnerabilities in healthcare systems and 

highlighted the need for predictive tools to mitigate its impact. This study employs machine 

learning (ML) techniques, including Support Vector Machine (SVM), Random Forest (RF), and 

Extreme Gradient Boosting (XG-Boost), to predict disease spread and optimize resource 

allocation. Using datasets enriched with features like population density, healthcare capacity, and 

mobility patterns, XG-Boost achieved superior performance, attaining 100% accuracy and 

surpassing RF (99%) and SVM (76%). Advanced methods, such as SHAP (SHapley Additive 

Explanations), provided critical insights into key factors driving disease progression, enabling 

transparent and interpretable predictions. The findings underscore the transformative potential 

of AI-driven solutions in guiding ICU bed allocation, ventilator distribution, and healthcare 

resource deployment, particularly in resource-constrained settings. While this study 

demonstrates the scalability and precision of ML frameworks for epidemic management, it also 

acknowledges limitations, such as dataset imbalance, and suggests integrating real-time data for 

enhanced predictions. By advancing AI applications in public health, this research offers a 

scalable and practical framework to strengthen global preparedness and response to future health 

crises. 
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1. Introduction 

Infectious diseases like COVID-19, Ebola, and Zika have 

spread quickly and unpredictable, posing huge challenges to 

global health systems, economics, and societal structures. 

These outbreaks have highlighted epidemics' catastrophic 

implications, which go far beyond the immediate health effects, 

affecting economies, straining healthcare systems, and causing 

extensive societal upheaval. In such emergencies, timely and 

accurate illness trajectory projections are critical instruments 

for reducing negative consequences. A thorough understanding 

of disease transmission allows healthcare organizations to 

efficiently allocate resources, such as delivering medical 

supplies, staffing healthcare institutions, and strategically 

deploying emergency services. These steps are critical in 

preventing the spread of illnesses, lowering mortality rates, and 

minimizing societal disturbances. Despite substantial advances 

in epidemic forecasting, standard methods frequently fail to 

deliver the speed and precision required during rapidly moving 

pandemics. This highlights the need for novel ways that can aid 

in real-time decision-making and improve preparedness for 

future epidemics (WHO, 2020; Zhao et al., 2021).  

Advances in artificial intelligence (AI) and big data analytics 

in recent years have created exciting potential for better 

epidemic response. Machine learning (ML) algorithms can 

reveal hidden patterns, trends, and correlations in large and 

complicated datasets, providing healthcare professionals and 

policymakers with actionable insights. AI-powered 

technologies can predict disease outbreaks, optimize the 

allocation of limited healthcare resources, and improve overall 

epidemic preparation. The ability to assess data in real time and 

make correct forecasts is important in countering rapidly 

emerging pandemics such as COVID-19, when even tiny 

delays in decision-making can have serious effects. For 

example, during the COVID-19 pandemic, real-time AI 

systems helped forecast probable hotspots and resource 

shortages, allowing for preventative interventions (Gupta & 

Kumar, 2021; Benvenuto et al., 2020). ML's disruptive 

potential stems from its ability to bridge the gap between data 

collection and actionable decision-making, which is critical in 

dynamic healthcare contexts. 

This study looks into the use of machine learning techniques to 

predict the spread of infectious diseases and optimise resource 

distribution during epidemics. This study ensures rigorous 

analyses and enhanced forecasting precision by utilizing 

comprehensive datasets acquired from platforms such as 

Kaggle, which are enriched with essential characteristics such 
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as confirmed cases, recoveries, fatalities, population density, 

mobility patterns, and healthcare capacity. Predictive 

frameworks were developed using advanced machine learning 

models such as Support Vector Machine (SVM), Random 

Forest (RF), and Extreme Gradient Boosting (XGBoost). 

Among these, XGBoost performed admirably, obtaining near-

perfect accuracy and emerged as the most effective model for 

the task. Such findings are crucial for directing resource 

allocation decisions and ensuring equitable distribution of 

healthcare services, particularly in resource-constrained 

settings (Ahmed et al., 2021; Patel et al., 2024). 

This study's methodology focuses on rigorous data preparation, 

feature selection utilizing tools like SHAP (SHapley Additive 

ExPlanations), and hyperparameter optimization techniques 

like Bayesian Optimization. These techniques ensure that the 

models are not only accurate but also scalable for use in real-

world scenarios. To give a thorough assessment of model 

performance, evaluation metrics such as AUROC and log-loss 

were used in addition to typical metrics such as accuracy and 

F1-score. This approach allows for precise modeling while 

addressing potential limits such as overfitting and 

interpretability issues, ensuring that the results are both credible 

and useful. This study adds to the expanding body of 

knowledge on AI-driven epidemic management by employing 

cutting-edge methodologies, highlighting the importance of 

advanced algorithms in dealing with global health emergencies 

(Chen et al., 2024; Wang et al., 2023). 

The findings of this study go beyond predicting accuracy to 

address key healthcare issues. Insights from these models are 

especially useful for optimizing resource allocation, which is a 

major concern during pandemics when healthcare systems face 

overwhelming demand. Predictive modeling, for example, can 

guide decisions on ICU bed allocation, ventilator distribution, 

and the deployment of healthcare workers in high-risk areas, 

ensuring that resources are allocated where they are most 

needed. Such data-driven initiatives not only reduce the load on 

healthcare systems, but also allow for a more equitable 

distribution of resources, resulting in improved outcomes for 

afflicted populations. Furthermore, the interpretability afforded 

by SHAP values increases trust in AI-driven judgments, 

guaranteeing that they are not only correct but also clear and 

understandable to stakeholders (Pourhomayoun & Shakibi, 

2021; Mary & Antony Raj, 2021). 

As the world grapples with the threat of new infectious diseases, 

the value of using AI and big data into epidemic response 

cannot be emphasized. This study underscores the importance 

of machine learning in improving global preparedness and 

response capacities. This study demonstrates how advanced 

algorithms can enhance epidemic forecasting and resource 

management, thereby providing a scalable and realistic 

framework for dealing with future global health emergencies. 

Finally, using the potential of AI and big data will be critical in 

saving lives, decreasing economic losses, and assuring the 

resilience of global healthcare systems. This approach's impact 

could be further enhanced by including real-time data, such as 

electronic health records and IoT sensors (Sujath et al., 2020; 

Azarafza et al., 2020). 

2. LITERATURE REVIEW 

Before beginning this research, it was critical to review prior 

work in the subject to get a thorough understanding of existing 

findings and methodology. This literature review focuses on 

machine learning (ML) and epidemiological models for 

COVID-19 prediction, with the goal of identifying research 

gaps and enhancing the area through advanced contributions. 

Numerous research have investigated machine learning 

techniques to anticipate disease propagation, resource 

allocation, and mortality patterns, demonstrating the 

transformative power of data-driven approaches. For example, 

Muhammad et al. (2021) used Decision Trees (DT), Naive 

Bayes (NB), Support Vector Machines (SVM), Logistic 

Regression (LR), and Artificial Neural Networks (ANN) to 

predict COVID-19 cases in Mexico, with DT outperforming the 

other methods in accuracy and identifying age as a significant 

factor. The study also found that people over the age of 45, as 

well as those with comorbidities such as diabetes, obesity, and 

hypertension, were more likely to become infected. Similarly, 

Mary and Albert Antony Raj (2021) studied classification 

algorithms such as NB, K-Nearest Neighbors (KNN), DT, RF, 

and SVM, and found that SVM achieved the highest accuracy 

(85%), proving its effectiveness in clinical decision-making for 

limited datasets. 

Other academics have worked to improve the scalability and 

predictive power of ML models for epidemic management. 

Lasya et al. (2022) examined models such as Multilinear 

Regression, LR, XGBoost, and RF Regressor, concluding that 

RF Classifier and Regressor provided greater results. Similarly, 

Arpaci et al. (2021) used six classifiers, including PART, 

Bayesian Network, and Logistic Regression, to predict patients 

based on 14 clinical variables, with the CR meta-classifier 

scoring 84% accuracy. Meanwhile, Benvenuto et al. (2020) 

used the ARIMA model for short-term case predictions with 

Johns Hopkins University data, and Daniyal et al. (2020) used 

regression-based methods to estimate mortality trends in 

Pakistan, concluding that quadratic regression offered the best 

fit. These findings highlight the necessity of choosing 

appropriate models based on context and dataset features. 

Time-series techniques and neural networks have also been 

extensively studied. Painuli et al. (2021) employed ARIMA, RF, 

and Extra Trees Classifier (ETC) to forecast COVID-19 trends 

in Indian states, with the ETC reaching 93.62% accuracy. 

Similarly, Azarafza et al. (2020) used LSTM to predict spread 

in Iran, surpassing ARIMA and other approaches. Zhao et al. 

(2021) proved the efficacy of backpropagation neural networks 

with fewer parameters, producing results equivalent to complex 

models. These studies demonstrate the potential of neural 

networks for capturing dynamic correlations in epidemic 

datasets, despite difficulties such as interpretability and 

computational complexity. 

Several research have underlined the effectiveness of ensemble 

and hybrid models in improving predicted accuracy. Gupta and 

Kumar (2021) developed a hybrid ensemble model that 

combines supervised and unsupervised learning techniques, 

resulting in much better prediction outputs. Wang et al. (2023) 

compared various machine learning models, such as Random 

Forests and Decision Trees, and found that ensemble methods 
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outperformed standalone approaches. Li and Huang (2024) 

stressed the need of interpretable machine learning models in 

improving trust and comprehension in healthcare decision-

making. Similarly, Patel et al. (2024) used clinical data and 

chest X-ray imaging to predict COVID-19 mortality, obtaining 

good predictive accuracy and assisting in the early detection of 

high-risk patients. These developments demonstrate the 

importance of merging several data sources to better predicted 

outcomes. 

Deep learning approaches have also gained popularity, with 

Zhao et al. (2022) using a deep extreme learning machine to 

detect COVID-19, reaching good diagnostic accuracy. Chen et 

al. (2024) investigated long-term health consequences of 

COVID-19 utilizing supervised machine learning approaches, 

demonstrating their efficacy in patient care and management. 

This detailed analysis highlights the wide range of ML 

algorithms used in COVID-19 prediction, from simple 

regression techniques to large neural networks, each adapted to 

a specific situation and dataset. 

In summary, these studies demonstrate the wide range of ML 

applications in epidemic control. While each technique 

provides distinct insights, the effectiveness of these models is 

strongly dependent on dataset quality, feature selection, and 

contextual relevance. Building on these findings, this study 

attempts to improve disease prediction and resource allocation 

using sophisticated machine learning approaches, thereby 

addressing gaps in present methodologies. This study adds to 

the expanding body of knowledge in AI-driven epidemic 

control by combining varied datasets and using cutting-edge 

models such as XGBoost. 

3. METHODOLOGY 

The primary goal of this research is to create the most accurate 

predictive model for COVID-19. Although tremendous 

progress has been made, the pandemic's continued expansion 

emphasizes the need for more accurate and effective systems. 

COVID-19 prediction is crucial to daily living, which 

motivates researchers to constantly improve forecasting 

systems. Several ways have been used to forecast COVID-19 

instances, with data mining emerging as one of the most 

reliable methods. In this study, we used numerous data mining 

approaches to construct a more effective prediction system, 

integrating machine learning techniques with data-driven 

analysis to produce the best outcomes. 

 

Figure 1. Flowchart of the Proposed Framework 

While much research has previously been done in this field, 

COVID-19 prediction is still one of the most concentrated 

study subjects. Many prediction strategies have been used to 

forecast COVID-19 trends, including statistical models, neural 

networks, and machine learning algorithms. We picked this 

field of inquiry because precise COVID-19 predictions are 

crucial in reducing the pandemic's effects and efficiently 

managing healthcare resources. The primary datasets for this 

study were obtained from Kaggle, a well-known platform for 

real-world datasets, giving a solid foundation for our 

investigation. 

3.1 Data Collection 

The first step was to identify several data sources related to 

COVID-19 prediction. The dataset used to create and train our 

COVID-19 prediction model was gathered from Kaggle's open-

source repository and the International Health Organization. 

Information was acquired from various sources and saved for 

future use. At this point, the data had been collected in its raw 

form and needed to be preprocessed before proceeding. After 

identifying data sources, we began data collection. Data 

collection is the process of acquiring, measuring, and analyzing 

an accurate dataset for research purposes, utilizing 

conventional verification procedures. For this study, we 

obtained datasets from Kaggle, which allowed us to test and 

validate our models. The collection includes demographic data, 

admission and discharge dates, the number of fatalities and 

recoveries, and patient specifics such as location, age, and 

gender, all of which are derived from computerized records. We 

deleted attributes that were unrelated to our model, ensuring 

that only significant data was retained. The dataset is 

multidimensional, with both textual and numerical data, 

making it ideal for developing a robust prediction model. Data 

gathering followed known epidemiological study protocols 

(Bates et al., 2014). 

3.2 Implementation 

Python was chosen as the primary programming language 

because of its rich libraries and strong community support for 

machine learning and data research. Models were developed 

and evaluated using libraries such as Scikit-learn (Pedregosa et 

al., 2011), TensorFlow (Abadi et al., 2016), and SHAP. Google 

Colab, a cloud-based platform, offered the computational 

resources required to process big datasets (Google Research 

2018). 

3.3 Data Transformation 

Data transformation is an important phase in the data mining 

process that aims to improve knowledge discovery. During data 

preparation, only relevant dataset components are chosen for 

investigation. Components that are inconsistent, irrelevant, or 

do not demonstrate unambiguous behaviors are removed. The 

textual data is then converted into numeric representation using 

Python's transformation methods, guaranteeing that the dataset 

is ready for further analysis.  

Data pretreatment techniques included scaling, normalization, 

and encoding to ensure uniformity and compatibility with 
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machine learning models. Scaling and normalization 

techniques were used, as described previously by Han et al. 

(2011). Textual data was transformed to numerical 

representations using Python modules, which are well-

documented for their reliability in data processing (Pedregosa 

et al., 2011). 

3.4 Classification 

Classification is the process of classifying data into structured 

categories to allow for systematic and efficient application. By 

categorizing the data, we create a coherent structure that allows 

for more accurate and effective analysis in the context of our 

research. This stage is critical because it establishes the labels 

and structure upon which machine learning models operate. 

Proper categorization aids in the identification of trends and 

anomalies in the dataset, hence increasing the prediction 

system's robustness. 

    3.5 Model Building 

Developing an effective model for forecasting COVID-19 has 

substantial obstacles. The first and most important component 

of this attempt is to have a thorough understanding of COVID-

19 and the many prediction models available. Since the 

epidemic began in early 2020, a variety of methodologies and 

algorithms have been used to forecast its spread. The COVID-

19 prediction model will be computer-based, with Python used 

to train and test on COVID-related datasets. Python, an object-

oriented programming language, is adaptable and incorporates 

automated machine learning techniques for data mining. To 

achieve optimal performance, model training, evaluation, and 

refinement are performed iteratively. 

3.6 Procedure 

We are developing a machine learning (ML)-based 

methodology that consists of the following four stages: 

Step 1: Model Construction:  

Using the training-testing approach, we will build a multi-class 

classification model. The parameters for date, time, and state in 

the COVID-19 dataset were obtained from Kaggle, with an 

80% training and 20% testing split. This stage entails carefully 

tweaking hyperparameters to improve model performance. 

Step 2: Feature Extraction:  

To keep the model simple, we will focus on picking only the 

most relevant features before beginning the modeling process. 

Feature extraction is the process of reducing the amount of data 

that needs to be processed while precisely defining the initial 

dataset. This is accomplished by picking certain variables and 

combining them to create new features. The purpose of feature 

extraction is to reduce the amount of characteristics in the 

dataset while also creating new, informative features from 

current data. Efficient feature selection is achieved using tools 

such as Principal Component Analysis (PCA) and Recursive 

Feature Elimination (RFE). 

SHAP (SHapley Additive exPlanations) was used to choose 

features, a model interpretability method that quantifies each 

feature's contribution to predictions (Lundberg and Lee, 2017). 

Hyperparameter tuning was accomplished using Bayesian 

Optimization, as described by Snoek et al. (2012). 

Step 3: Training and Testing through Multi-Classification:  

The dataset will be modeled with a variety of ML approaches, 

including XGBoost, Random Forest, and SVM. The training 

will use 80% of the data, with the remaining 20% left for testing. 

This ensures that the models are verified on previously unseen 

data, providing a reliable estimate of their generalization skills. 

Step 4: Performance Evaluation:  

The models were assessed using common measures such as 

accuracy, precision, recall, F1-score, and AUC-ROC. These 

measures are frequently used in the literature to evaluate 

classification models (Fawcett, 2006). Kohavi (1995) 

advocated cross-validation approaches to assure the 

generalizability of results.  

3.7 Model Selection 

The machine learning models employed in this work include 

Support Vector Machine (SVM), Random Forest (RF), and 

Extreme Gradient Boosting (XGBoost). SVM, developed by 

Cortes and Vapnik (1995), performs well in classification jobs 

with obvious margins. Breiman (2001) proposed Random 

Forest, which is well-known for its robustness and capacity to 

handle big datasets. XGBoost, created by Chen and Guestrin 

(2016), was chosen because of its superior performance in 

gradient boosting tasks. 

XGBoost 

Extreme Gradient Boosting (XGBoost) is an improved 

implementation of the gradient boosting technique that is well-

known for its speed, accuracy, and efficiency when working 

with huge datasets. XGBoost optimizes an objective function 

that combines a loss function, which calculates the difference 

between predicted and actual values, with a regularization term, 

which penalizes model complexity to prevent overfitting. This 

combination assures both precision and generalizability in 

forecasts. Individual trees in the ensemble work together 

iteratively to reduce overall loss, while the total number of trees 

determines the model's structure and depth. 

XGBoost has various additional features that make it very 

useful for complex datasets. First, it employs regularization 

techniques like L1 (Lasso) and L2 (Ridge) penalties to reduce 

overfitting and increase the model's capacity to generalize to 

new data. Second, it offers parallel processing, which reduces 

computing time by running jobs concurrently. Third, XGBoost 

efficiently manages sparse data by including techniques that 

enable it to analyze missing or sparse features while 

maintaining accuracy. Finally, the model supports customized 

objectives, allowing users to create their own loss functions 

depending on specific tasks or data attributes. 

XGBoost's gradient boosting algorithm efficiently optimizes 

the loss function using second-order derivatives. This enables 

faster convergence and more accurate adjustments during 

training. The projected value for a data point is incrementally 

improved by combining the contributions of newly added trees, 

with each tree attempting to rectify residual mistakes from 
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previous rounds. This iterative technique ensures that the 

model's prediction performance improves incrementally 

throughout the training period. 

These qualities make XGBoost ideal for high-dimensional and 

complex datasets like those utilized in this study. Its scalability 

and resilience provide consistent performance, with remarkable 

predictive accuracy for COVID-19 trends and establishing its 

usefulness as a crucial tool in epidemic prediction and resource 

management. 

Random Forest 

Random Forest is a dynamic and effective ensemble learning 

method that generates several decision trees during training. 

Each tree in the forest contributes to the final prediction, either 

by averaging the outputs for regression tasks or by voting with 

a majority for classification tasks. This ensemble strategy 

reduces variance greatly by combining predictions from 

numerous trees, improving the model's ability to generalize to 

new data. By integrating the outputs of numerous trees, 

Random Forest reduces the risk of overfitting, which is 

common in individual decision tree models. 

One of Random Forest's primary assets is its ability to rank 

features based on relevance. The method calculates each 

feature's proportionate contribution to the final predictions, 

providing useful insights into the dataset. This capacity not 

only improves the model's interpretability, but also helps to 

refine the dataset by selecting and maintaining only the most 

important attributes. The model is especially resistant to noisy 

data thanks to the randomness provided during tree creation, 

which ensures that no single tree dominates the prediction 

process. 

Random Forest is extremely versatile and can handle a wide 

range of data sources, including numerical and categorical 

features. It is also resistant to missing data, making it 

appropriate for datasets including incomplete records. 

Furthermore, the model accurately captures complicated 

relationships between variables, which is especially useful for 

the classification tasks in this study. The feature importance 

scores provided by Random Forest were critical in refining the 

dataset used in this work, ensuring that the most informative 

features were used for training. 

Overall, Random Forest's ensemble learning technique, 

resilience, and adaptability make it an ideal candidate for our 

study. Its capacity to generalize well even in the presence of 

noise and missing data ensures consistent performance in 

predicting COVID-19 cases and contributes to the construction 

of a strong prediction framework. 

Support Vector Machines (SVM) 

Support Vector Machines (SVMs) are popular supervised 

learning models used for classification and regression 

applications. The primary goal of SVM is to find the best 

hyperplane that optimizes the margin between data points in 

different classes. The margin is the distance between the 

hyperplane and the nearest data points from each class, which 

ensures a distinct separation of categories. This margin-based 

method improves the model's capacity to generalize to 

previously unknown data, making it especially useful for 

classification problems where the classes are clearly divided. 

SVM uses the kernel method to solve non-linear classification 

problems in which data points cannot be separated by a straight 

line. This approach converts input data into higher-dimensional 

feature spaces, allowing for linear separation in a transformed 

space where the original data points may have complex 

relationships. The Radial Basis Function (RBF) kernel is one 

of the most frequent kernels in SVM, and it was employed in 

this study. The RBF kernel calculates the similarity of two data 

points based on their distance and is regulated by a parameter, 

gamma, which affects the influence of specific training samples. 

A lower gamma number indicates that points further apart have 

little influence, whereas a higher gamma value highlights 

points closer together. 

SVM's capacity to simulate nonlinear decision limits, paired 

with its resistance to overfitting, makes it an important addition 

to this research. The model's reliance on a subset of essential 

data points known as support vectors increases its efficiency 

and precision when determining the decision boundary. 

Although SVM can be computationally expensive for big 

datasets because to its reliance on kernel functions, it produces 

great accuracy when applied to smaller, well-separated datasets. 

This feature makes it ideal for instances where data classes are 

clearly separated, as is the case with some COVID-19 

prediction tasks. 

In this study, SVM was used to identify and forecast COVID-

19 cases, leveraging its strong theoretical foundation and 

practical success in dealing with high-dimensional data. Its 

capacity to strike a balance between complexity and accuracy 

was critical in verifying the prediction framework, 

supplementing the findings of other machine learning models. 

Enhanced Evaluation Metrics and Interpretability 

To guarantee a thorough examination of model performance, 

advanced metrics were used to provide more detailed insights 

into predicted accuracy and model behavior. Precision, which 

assesses the proportion of true positives compared to expected 

positives, was used to reduce false alarms and ensure reliability. 

Recall, on the other hand, measures the fraction of real 

positives recognized, which is especially important in 

pandemic settings where false negatives can have serious 

repercussions, such as unreported cases spreading the disease 

further. The F1-Score, a harmonic mean of accuracy and recall, 

was used to balance these two metrics, resulting in a single 

measure that accounts for both over- and under-prediction 

mistakes. Additionally, the Area Under the Receiver Operating 

Characteristic Curve (AUC-ROC) was calculated to evaluate 

the trade-off between sensitivity and specificity across various 

threshold settings, providing a robust measure of the models’ 

overall discriminative ability. 

Beyond performance measurements, interpretability methods 

like SHAP (SHapley Additive Explanations) were used to 

assess and comprehend the impact of different attributes on 

model predictions. SHAP values provide a clear picture of 

feature contributions by measuring the impact of each feature 

on expected outcomes. This level of interpretability builds trust 
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in the prediction system by ensuring that decisions are data-

driven and understandable. This study provides a 

comprehensive assessment of model performance by 

combining advanced evaluation metrics and interpretability 

tools, ensuring accuracy and dependability while instilling 

confidence in the predictive framework. 

  

4. RESULTS AND ANALYSIS 

Data Analysis 

The Kaggle dataset provided vital insights on the global 

progression of COVID-19. The analysis focuses on trends in 

confirmed cases, recoveries, active cases, and deaths, 

demonstrating the pandemic's exponential rise and related 

healthcare issues. These findings provide a good platform for 

predictive modeling and resource optimization. 

Global Trends in COVID-19 Cases 

Figure 2 depicts the global spread of COVID-19, showing 

confirmed cases, recoveries, active cases, and deaths over time. 

The exponential spike in confirmed cases illustrates the 

pandemic's rapid spread between February and August 2020. 

Recoveries are steadily increasing, indicating improvements in 

healthcare management and recovery rates, whereas active 

cases highlight the continuous load on healthcare systems. 

These patterns are consistent with the findings of Benvenuto et 

al. (2020), who emphasized the usefulness of ARIMA models 

for short-term prediction but did not account for major 

demographic parameters included in this analysis. The 

relatively flat trend in fatalities emphasizes the need for 

predictive modeling to reduce healthcare strain and prevent 

future outbreaks. 

 

 

Figure 2. Global Trend of COVID-19 Cases 

 

Country-Specific Trends 

Figures 3, 4, and 5 show the top ten countries by confirmed 

cases, deaths, and recoveries, respectively. Figure 3 shows that 

the United States has the highest number of confirmed cases, 

followed by Brazil and India. This finding is consistent with 

Gupta and Kumar's (2021) investigation, which identified 

population density and movement patterns as key determinants 

of urban case counts. Figure 4 demonstrates that the United 

States, Brazil, and the United Kingdom have the greatest 

reported deaths, highlighting the significance of prompt 

measures to reduce mortality. Figure 5 contrasts the high 

recovery rates in Brazil and the United States, demonstrating 

the efficacy of respective healthcare systems in managing 

outcomes. These results reinforce the findings of Mary and 

Antony Raj (2021), who emphasized the correlation between 

healthcare capacity and recovery rates. 

Figure 3. Top 10 Countries with the Highest Confirmed Cases 

 

Figure 4. Top 10 Countries with the Highest Deaths 

 

 

Figure 5. Top 10 Countries with the Highest Recovered Cases 

Daily Fluctuations 

Figure 6 illustrates the daily trends in new cases, recoveries, 

and fatalities. The substantial swings in new cases underscore 

the pandemic's volatile nature, as previously stated by Zhao et 

al. (2021). Overall, recovery rates are improving, but daily 

deaths remain quite low. This visualization highlights the 

dynamic nature of COVID-19 trends, as well as the importance 

of real-time data monitoring for precise forecast and response 

planning. 
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Figure 6.  Daily New Cases, Deaths, and Recoveries 

Comparative Performance Analysis of Machine Learning 

Models 

This section compares the performance of three machine 

learning models used to forecast the spread of COVID-19: 

Support Vector Machine (SVM), Random Forest (RF), and 

XGBoost. Each model was evaluated using performance 

criteria such as accuracy, precision, recall, F1-score, and 

confusion matrices. 

Support Vector Machine (SVM) 

The SVM model has reasonable predictive performance, with 

an accuracy of 76% across both the validation and test datasets. 

The precision, recall, and F1 scores were all balanced at 0.79, 

0.79, and 0.76, respectively. However, the confusion matrix 

(Figure 7) revealed a large number of false negatives (613 

examples), indicating that the model had difficulty identifying 

true positives. Similar findings were reported by Lasya et al. 

(2022), who emphasized SVM's limitations with imbalanced 

datasets. While SVM delivers accurate negative case 

identification, its overall performance is insufficient for high-

stakes applications. Improvements in feature engineering and 

hyperparameter adjustment, as proposed by Zhao et al. (2021), 

may increase its utility. 

 

Figure 7. Confusion matrix for the SVM model. 

Random Forest (RF) 

The RF model obtained 99% accuracy on both the validation 

and test datasets. Its precision, recall, and F1 scores were all 

consistently high at 0.99, indicating a good mix of sensitivity 

and specificity. The confusion matrix (Figure 8) demonstrated 

RF's reliability, with just 11 erroneous negatives and 5 false 

positives. These findings are consistent with those published by 

Mary and Antony Raj (2021), who found RF to be robust when 

dealing with huge datasets. However, the computational 

complexity of RF complicates real-time forecasts, particularly 

for large-scale epidemic control. 

 

Figure 8. Confusion matrix for the Random Forest model. 

Extreme Gradient Boosting (XGBoost) 

XGBoost beat the other models, reaching 100% accuracy on 

the test set. Precision, recall, and F1-scores were all recorded 

as 1.00, demonstrating the model's ability to categorize cases 

correctly. The confusion matrix (Figure 9) revealed few 

misclassifications, with only six false positives and eight false 

negatives. These findings are congruent with those of Chen and 

Guestrin (2016), who showed that XGBoost can effectively 

handle imbalanced datasets. Its scalability and processing 

efficiency make it ideal for activities that require precision and 

reliability, such as resource distribution during pandemics. 

 

Figure 9. Confusion matrix for the XGBoost model. 

Comparative Insights 

Table 1 summarizes the comparative performance measures for 

SVM, RF, and XGBoost. XGBoost emerged as the most 

effective model, with higher accuracy, precision, recall, and F1-

scores. While RF also performed admirably, its somewhat 

higher misclassification rates and processing costs place it 

behind XGBoost in practical usefulness. In contrast, SVM, 

despite its lesser accuracy, provides a foundational technique 

but requires extensive refining to match the performance of RF 

and XGBoost. These findings are consistent with those of 

Lasya et al. (2022) and Gupta and Kumar (2021), who 

underlined the efficacy of ensemble models in epidemic 

prediction. 

 

Table Representation of Metrics 

Table 1. Comparative Performance Metrics of SVM, Random Forest, and XGBoost. 
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Model Accuracy 
Precision (Macro 

Avg) 

Recall (Macro 

Avg) 

F1-Score (Macro 

Avg) 
False Positives False Negatives 

SVM 76% 0.79 0.79 0.76 80 613 

Random Forest 99% 0.99 0.99 0.99 5 11 

XGBoost 100% 1.00 1.00 1.00 6 8 

       

The excellent performance of XGBoost demonstrates its ability 

to assist vital decision-making during pandemics. Its high 

accuracy and scalability allow for precise resource allocation, 

such as ICU beds and ventilators, to areas of greatest need. 

Insights from SHAP values highlight the importance of 

population density and healthcare capacity as key determinants, 

in line with Lundberg and Lee (2017). Future research should 

concentrate on combining XGBoost with real-time data 

pipelines to improve its use in dynamic and large-scale 

epidemic management scenarios. 

5. CONCLUSIONS 

This study investigated the use of machine learning (ML) 

approaches to forecast the spread of COVID-19 and optimise 

resource allocation during pandemics. The study used complete 

datasets enriched with demographic and healthcare-related 

characteristics to illustrate the performance of three machine 

learning models—Support Vector Machine (SVM), Random 

Forest (RF), and Extreme Gradient Boosting (XGBoost)—in 

forecasting COVID-19 trends. XGBoost outperformed RF 

(99%) and SVM (76%), scoring 100% accuracy. The use of 

SHAP values gave vital insights into feature importance, 

revealing population density, healthcare capacity, and 

movement patterns as key drivers of illness development. 

These discoveries are significant due to their potential for real-

world applications. Accurate projections can help governments 

and hospital executives make data-driven decisions, such as 

assigning ICU beds and ventilators to regions in greatest need. 

This study emphasizes the significance of AI in improving 

epidemic preparedness and response, ultimately lowering 

healthcare costs and increasing outcomes during pandemics. 

However, this study has drawbacks. The dataset utilized was 

uneven, which may influence the models' generalizability to 

new data. While techniques such as cross-validation and feature 

selection were used to address this issue, future research should 

look into integrating real-time data streams from IoT devices, 

electronic health records, and mobility trackers to improve 

predictive capabilities. Furthermore, hybrid models that 

combine the advantages of XGBoost and RF could provide 

even greater accuracy and scalability. Extending the system to 

anticipate the spread of other infectious diseases, such as 

influenza or Zika, is another intriguing research direction. 

In terms of practical applications, this study proposes a scalable 

framework for optimizing epidemic response techniques. 

Healthcare systems can improve their resilience to pandemics 

by employing machine learning models such as XGBoost, 

which ensure improved resource allocation, prompt 

interventions, and equitable healthcare delivery. Future 

research should focus on developing user-friendly decision 

support systems that can turn these projections into actionable 

insights for public health workers and policymakers. 

In conclusion, our study adds to the expanding body of 

knowledge on AI-driven epidemic management by 

demonstrating how advanced algorithms might improve 

healthcare systems' ability to respond to emergencies. Future 

research can improve these models by addressing present limits 

and exploring novel techniques, making them vital tools for 

protecting public health in the face of rising global health 

concerns. 

REFERENCES 

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... 

& Zheng, X. (2016). TensorFlow: Large-scale machine 

learning on heterogeneous systems. Retrieved January 2025, 

from https://www.tensorflow.org/ 

Ahmed, R., Zhao, Q., & Chen, L. (2021). Supervised machine 

learning models for prediction of COVID-19 infection. Journal 

of Medical Data Analysis, 12(3), 234–245. 

https://doi.org/10.1007/s42979-020-00394-7 

Arpaci, I., Huang, S., Al-Emran, M., Al-Kabi, M. N., & Peng, 

M. (2021). Predicting the COVID-19 infection with fourteen 

clinical features using machine learning classification 

algorithms. Multimedia Tools and Applications, 80(8), 11943–

11957. https://doi.org/10.1007/s11042-020-10340-7 

Arslan, H. (2021). Machine learning methods for COVID-19 

prediction using human genomic data. Proceedings, 20. 

https://doi.org/10.3390/proceedings2021074020 

Azarafza, M., Azarafza, M., & Tanha, J. (2020). COVID-19 

infection forecasting based on deep learning in Iran. MedRxiv, 

1–7. 

Bates, D. W., Saria, S., Ohno-Machado, L., Shah, A., & Escobar, 

G. (2014). Big data in health care: Using analytics to identify 

and manage high-risk and high-cost patients. Health Affairs, 

33(7), 1123–1131. https://doi.org/10.1377/hlthaff.2014.0041 

Benvenuto, D., Giovanetti, M., Vassallo, L., Angeletti, S., & 

Ciccozzi, M. (2020). Application of the ARIMA model on the 

https://www.tensorflow.org/
https://doi.org/10.1007/s42979-020-00394-7
https://doi.org/10.1007/s11042-020-10340-7
https://doi.org/10.3390/proceedings2021074020
https://doi.org/10.1377/hlthaff.2014.0041


Rob and Riipa et al. (2025)                                                                                                                                               PRAIHI, 1(2), pp. 1-XY.  

 

9 

 

COVID-2019 epidemic dataset. Data in Brief, 29, 105340. 

https://doi.org/10.1016/j.dib.2020.105340 

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 

5–32. https://doi.org/10.1023/A:1010933404324 

Brunese, L., Martinelli, F., Mercaldo, F., & Santone, A. (2020). 

Machine learning for coronavirus COVID-19 detection from 

chest X-rays. Procedia Computer Science, 176, 2212–2221. 

https://doi.org/10.1016/j.procs.2020.09.258 

Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree 

boosting system. Proceedings of the 22nd ACM SIGKDD 

International Conference on Knowledge Discovery and Data 

Mining, 785–794. https://doi.org/10.1145/2939672.2939785 

Chen, Z., Zhang, R., & Fang, L. (2024). Predicting post-

COVID-19 complications using supervised machine learning. 

Journal of Predictive Healthcare, 18(2), 78–89. 

https://doi.org/10.1007/s42979-024-00403-7 

Cortes, C., & Vapnik, V. (1995). Support-vector networks. 

Machine Learning, 20(3), 273–297. 

https://doi.org/10.1007/BF00994018 

Daniyal, M., Ogundokun, R. O., Abid, K., Khan, M. D., & 

Ogundokun, O. E. (2020). Predictive modeling of COVID-19 

death cases in Pakistan. Infectious Disease Modelling, 5, 897–

904. https://doi.org/10.1016/j.idm.2020.10.011 

Fawcett, T. (2006). An introduction to ROC analysis. Pattern 

Recognition Letters, 27(8), 861–874. 

https://doi.org/10.1016/j.patrec.2005.10.010 

Fayyoumi, E., Idwan, S., & Aboshindi, H. (2020). Machine 

learning and statistical modelling for prediction of Novel 

COVID-19 patients: Case study—Jordan. International 

Journal of Advanced Computer Science and Applications, 11(5), 

122–126. https://doi.org/10.14569/IJACSA.2020.0110518 

 

Google Research. (2018). Google Colab. Retrieved January 

2025, from https://colab.research.google.com/ 

 

Gothai, E., Thamilselvan, R., Rajalaxmi, R. R., Sadana, R. M., 

Ragavi, A., & Sakthivel, R. (2021). Prediction of COVID-19 

growth and trend using a machine learning approach. Materials 

Today: Proceedings, 1–11. 

https://doi.org/10.1016/j.matpr.2021.04.051 

 

Gupta, A., & Kumar, S. (2021). A novel hybrid supervised and 

unsupervised hierarchical ensemble for COVID-19 data 

classification. Scientific Reports, 11, 345–356. 

https://doi.org/10.1038/s41598-024-60637-y 

Gupta, V. K., Gupta, A., Kumar, D., & Sardana, A. (2021). 

Prediction of COVID-19 confirmed, death, and cured cases in 

India using random forest model. Big Data Mining and 

Analytics, 4(2), 116–123. 

https://doi.org/10.26599/BDMA.2020.9020016 

Han, J., Kamber, M., & Pei, J. (2011). Data mining: Concepts 

and techniques (3rd ed.). Elsevier. 

Holmes, K. V. (2003). SARS-associated coronavirus. New 

England Journal of Medicine, 348(20), 1948–1951. 

https://doi.org/10.1056/nejmp030078 

Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., ... & Cao, 

B. (2020). Clinical features of patients infected with 2019 novel 

coronavirus in Wuhan, China. The Lancet, 395(10223), 497–

506. https://doi.org/10.1016/S0140-6736(20)30183-5 

Huang, C.-J., Chen, Y.-H., Ma, Y., & Kuo, P.-H. (2020). 

Multiple-input deep convolutional neural network model for 

COVID-19 forecasting in China. MedRxiv. 

https://doi.org/10.1101/2020.03.23.20041608 

Kaggle. (2025). Datasets for COVID-19 Prediction. Retrieved 

January 2025, from https://www.kaggle.com/ 

Khanday, A. M. U. D., Rabani, S. T., Khan, Q. R., Rouf, N., & 

Mohi Ud Din, M. (2020). Machine learning-based approaches 

for detecting COVID-19 using clinical text data. International 

Journal of Information Technology (Singapore), 12(3), 731–

739. https://doi.org/10.1007/s41870-020-00495-9 

Kohavi, R. (1995). A study of cross-validation and bootstrap 

for accuracy estimation and model selection. Proceedings of 

the 14th International Joint Conference on Artificial 

Intelligence, 1137–1143. 

Kumari, R., Kumar, S., Poonia, R. C., Singh, V., Raja, L., 

Bhatnagar, V., & Agarwal, P. (2021). Analysis and predictions 

of spread, recovery, and death caused by COVID-19 in India. 

Big Data Mining and Analytics, 4(2), 65–75. 

https://doi.org/10.26599/BDMA.2020.9020013 

Lasya, K. L., Lahari, D., Akarsha, R., Lavanya, A., Prakash, K. 

B., & Tran, D. T. (2022). Analysis and prediction of COVID-

19 datasets using machine learning algorithms. 2022 1st 

International Conference on Electrical, Electronics, 

Information and Communication Technologies (ICEEICT 

2022), 8(5), 3–8. 

https://doi.org/10.1109/ICEEICT53079.2022.9768598 

Li, J., & Huang, Y. (2024). Interpretable machine learning for 

disease prognosis: Applications on COVID-19. Journal of 

Clinical Informatics, 22(1), 112–125. 

https://arxiv.org/abs/2405.11672 

Lundberg, S. M., & Lee, S. I. (2017). A unified approach to 

interpreting model predictions. Advances in Neural 

Information Processing Systems, 4765–4774. 

Mandayam, A. U., Rakshith, A. C., Siddesha, S., & Niranjan, S. 

K. (2020). Prediction of COVID-19 pandemic based on 

regression. Proceedings of the 2020 5th International 

Conference on Research in Computational Intelligence and 

Communication Networks (ICRCICN 2020), 1–5. 

https://doi.org/10.1109/ICRCICN50933.2020.9296175 

Mary, L. W., & Albert Antony Raj, S. (2021). Machine learning 

algorithms for predicting SARS-CoV-2 (COVID-19)—A 

comparative analysis. Proceedings of the 2nd International 

https://doi.org/10.1016/j.dib.2020.105340
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.procs.2020.09.258
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1007/s42979-024-00403-7
https://doi.org/10.1007/BF00994018
https://doi.org/10.1016/j.idm.2020.10.011
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.14569/IJACSA.2020.0110518
https://colab.research.google.com/
https://doi.org/10.1016/j.matpr.2021.04.051
https://doi.org/10.1038/s41598-024-60637-y
https://doi.org/10.26599/BDMA.2020.9020016
https://doi.org/10.1056/nejmp030078
https://doi.org/10.1016/S0140-6736(20)30183-5
https://doi.org/10.1101/2020.03.23.20041608
https://www.kaggle.com/
https://doi.org/10.1007/s41870-020-00495-9
https://doi.org/10.26599/BDMA.2020.9020013
https://doi.org/10.1109/ICEEICT53079.2022.9768598
https://arxiv.org/abs/2405.11672
https://doi.org/10.1109/ICRCICN50933.2020.9296175


Rob and Riipa et al. (2025)                                                                                                                                               PRAIHI, 1(2), pp. 1-XY.  

 

10 

 

Conference on Smart Electronics and Communication 

(ICOSEC 2021), 2, 1607–1611. 

https://doi.org/10.1109/ICOSEC51865.2021.9591801 

Muhammad, L. J., Algehyne, E. A., Usman, S. S., Ahmad, A., 

Chakraborty, C., & Mohammed, I. A. (2021). Supervised 

machine learning models for prediction of COVID-19 infection 

using epidemiology dataset. SN Computer Science, 2(1), 1–13. 

https://doi.org/10.1007/s42979-020-00394-7 

 

Painuli, D., Mishra, D., Bhardwaj, S., & Aggarwal, M. (2021). 

Forecast and prediction of COVID-19 using machine learning. 

Data Science for COVID-19 Volume 1: Computational 

Perspectives, 381–397. https://doi.org/10.1016/B978-0-12-

824536-1.00027-7 

 

Patel, V., Singh, R., & Yadav, P. (2024). Multi-modal models 

for COVID-19 mortality prediction: Integrating clinical data 

and imaging. PLoS ONE, 19(4), e0267532. 

https://arxiv.org/abs/2109.02439 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, 

B., Grisel, O., ... & Duchesnay, E. (2011). Scikit-learn: 

Machine learning in Python. Journal of Machine Learning 

Research, 12, 2825–2830. 

Pourhomayoun, M., & Shakibi, M. (2021). Predicting mortality 

risk in patients with COVID-19 using machine learning to help 

medical decision-making. Smart Health, 20(November 2020), 

100178. https://doi.org/10.1016/j.smhl.2020.100178 

Rochmawati, N., Hidayati, H. B., Yamasari, Y., Yustanti, W., 

Rakhmawati, L., Tjahyaningtijas, H. P. A., & Anistyasari, Y. 

(2020). COVID symptom severity using decision tree. 

Proceedings of the 2020 3rd International Conference on 

Vocational Education and Electrical Engineering (ICVEE 

2020). https://doi.org/10.1109/ICVEE50212.2020.9243246 

Samuel, A. L. (1959). Some studies in machine learning. IBM 

Journal of Research and Development, 3(3), 210–229. 

https://doi.org/10.1109/JRDC.1959.5392560 

She, J., Jiang, J., Ye, L., Hu, L., Bai, C., & Song, Y. (2020). 

2019 novel coronavirus of pneumonia in Wuhan, China: 

Emerging attack and management strategies. Clinical and 

Translational Medicine, 9(1). https://doi.org/10.1186/s40169-

020-00271-z 

Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical 

Bayesian optimization of machine learning algorithms. 

Advances in Neural Information Processing Systems, 2951–

2959. 

Sujath, R., Chatterjee, J. M., & Hassanien, A. E. (2020). A 

machine learning forecasting model for COVID-19 pandemic 

in India. Stochastic Environmental Research and Risk 

Assessment, 34(7), 959–972. https://doi.org/10.1007/s00477-

020-01827-8 

Sun, N. N., Yang, Y., Tang, L. L., Dai, Y. N., Gao, H. N., Pan, 

H. Y., & Ju, B. (2020). A prediction model based on machine 

learning for diagnosing early COVID-19 patients. MedRxiv, 1–

12. 

Van Der Hoek, L., Pyrc, K., Jebbink, M. F., Vermeulen-Oost, 

W., Berkhout, R. J. M., Wolthers, K. C., ... & Berkhout, B. 

(2004). Identification of a new human coronavirus. Nature 

Medicine, 10(4), 368–373. https://doi.org/10.1038/nm1024 

Venkata Ramana, B., Babu, M. S. P., & Venkateswarlu, N. 

(2011). A critical study of selected classification algorithms for 

liver disease diagnosis. International Journal of Database 

Management Systems, 3(2), 101–114. 

https://doi.org/10.5121/ijdms.2011.3207 

Wang, M., Zhang, Y., & Liu, H. (2023). Benchmarking machine 

learning models for COVID-19 trend prediction. IEEE 

Transactions on Computational Biology and Bioinformatics, 

20(3), 654–663. https://doi.org/10.1109/TCBB.2023.3242345 

Wernick, M., Yang, Y., Brankov, J., Yourganov, G., & Strother, 

S. (2010). Machine learning in medical imaging. IEEE Signal 

Processing Magazine, 27(4), 25–38. 

https://doi.org/10.1109/MSP.2010.936730 

Wiens, J., & Shenoy, E. S. (2018). Machine learning for 

healthcare: On the verge of a major shift in healthcare 

epidemiology. Clinical Infectious Diseases, 66(1), 149–153. 

https://doi.org/10.1093/cid/cix731 

Zhao, H., Li, Y., Chu, S., Zhao, S., & Liu, C. (2021). A COVID-

19 prediction optimization algorithm based on real-time neural 

network training: Taking Italy as an example. Proceedings of 

the IEEE Asia-Pacific Conference on Image Processing, 

Electronics and Computers (IPEC 2021), 345–348. 

https://doi.org/10.1109/IPEC51340.2021.942114 

Zhao, H., Wang, X., & Li, F. (2022). Supervised machine 

learning-based prediction of COVID-19. International Journal 

of Data Science and Analytics, 14(2), 102–115. 

https://doi.org/10.1007/s41060-021-00344-7 

 

 

 

https://doi.org/10.1109/ICOSEC51865.2021.9591801
https://doi.org/10.1007/s42979-020-00394-7
https://doi.org/10.1016/B978-0-12-824536-1.00027-7
https://doi.org/10.1016/B978-0-12-824536-1.00027-7
https://arxiv.org/abs/2109.02439
https://doi.org/10.1016/j.smhl.2020.100178
https://doi.org/10.1109/ICVEE50212.2020.9243246
https://doi.org/10.1109/JRDC.1959.5392560
https://doi.org/10.1186/s40169-020-00271-z
https://doi.org/10.1186/s40169-020-00271-z
https://doi.org/10.1007/s00477-020-01827-8
https://doi.org/10.1007/s00477-020-01827-8
https://doi.org/10.1038/nm1024
https://doi.org/10.5121/ijdms.2011.3207
https://doi.org/10.1109/TCBB.2023.3242345
https://doi.org/10.1109/MSP.2010.936730
https://doi.org/10.1093/cid/cix731
https://doi.org/10.1109/IPEC51340.2021.942114
https://doi.org/10.1007/s41060-021-00344-7

