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The research involves examining how financial markets, particularly the NASDAQ and S&P 500
indices, react when under stress, as well as applying advanced time series techniques in an
attempt to predict crashes. Accurate prediction of crashes is important due to the tremendous
impact financial market collapses, including the 2008 and COVID-19 epidemics, have on the
worldwide economy. To model non-linear market dynamics, the study combines dynamic
GARCH extensions and wavelet-based time series decomposition with ARIMA and GARCH
models to forecast market volatility. The sample period ranged from January 2021 to August
2024, with total observations of 787 and 921 for the S&P500 and NASDAQ, respectively. The

selection of the ARIMA and GARCH models was confirmed by the ADF and PP tests to
determine whether the time series is stationary. The GARCH model with the GARCH effect of
0.912741 has most certainly accommodated the volatility clustering phenomenon, due to which
an episode of high (low) volatility was followed by another episode of the same kind and
successive spikes in the volatility, especially in the case of NASDAQ. The volatility persistence
of the S&P 500 was lower (0.6785330 GARCH effect). For a relatively small level
autoregressive table, the forecasts demonstrate that the variance of S&P 500 substantially
increases in high volatility periods for most by up to 0.006. The NASDAQ was somewhat more
persistent, as indicated by a variance of 0.00024. These findings illustrate how efficiently the
proposed forecasting model is able to predict market crashes and offer valuable information for
investors and policymakers.

DOI:  https://doi.org/10.63471/tbfli 25002

@ 2025 Transactions on Banking,

Finance, and Leadership Informatics (TBFLI), C5K Research Publication

1. Introduction

Financial markets are highly volatile, often characterized by
market crashes and high highs. And these episodes of asset
value losses in very short periods have a huge impact on
financial institutions, individual fortunes, and world economies.
These crashes have been difficult to foresee by economists,
politicians as well and investors across the world. Recent years
have seen big progress in the application of machine learning
and time series analysis, opening up new opportunities for
building structural models that can predict such disasters. The
purpose of this paper is to develop a methodology to utilize
these recently developed techniques for predicting the collapses
(increase in volatility) in financial markets with reference

to...106-SEHA: NASDAQ and S&P 500 as
aggregated indices.

important

There were seemingly frequent significant global financial
market meltdowns, each having its own causes and
consequences. For instance, the Great Depression, an extended
period of economic decline that impacted economies globally,
ensued in the wake of the 1929 stock market crash on Wall
Street (Bernanke, 2000). Stock share prices on the Dow Jones
Industrial Average dropped 25% in just two days because of
the crash. It was one of the worst days in modern economic
history (Tooze, 2018). More recently, the S&P 500 index
plunged 57% during the October 2007 to March 2009 collapse
after the American housing bubble burst and led to a Global
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Financial Crisis in 2008. The crisis wiped out approximately
$30 trillion from global equity markets and precipitated deep
economic recessions in different countries (Brunnermeier,
2009; Reinhart & Rogoff, 2009).

One of the swiftest bear markets in history hit world financial
markets yet again when to the COVID-19 outbreak in 2020.
Courtesy to the pandemic's causes, i.e., forced lockdowns and
economic shutdowns, the S&P 500 had shared value erosion of
~34% in February-March 2020 (Baker et al., 2020). But thanks
to the extraordinary measures deployed by governments and
central banks to backstop fiscal and monetary policy around the
globe during the crash, it's been a much quicker recovery than
we've seen in previous crises. It reflects how the financial
markets have become so much more complex that we cannot
so easily predict how they would respond (Gopinath, 2020).

Despite the frequency and serious consequences of these
crashes, predicting them is an ever-clusive white whale.
ARIMA and GARCH models have been the dominant
traditional econometric methods for analyzing financial time
series data for a few decades. This is of particular use in the
modeling of volatility and trends in finance. For example,
GARCH models are often used to describe the volatility
clusters. The higher volatility (up-going or down-going) series
in this pattern exhibits more frequent occurrence of large
emotion-free price change (Creal et al., 2013; Vulandari &
Rokhmati, 2015). These models do, however, contain design
problems, particularly about the intensity and timing of market
crashes(Chan, 2011). They often use historical data, but it may
not fully capture what new market conditions mean for
prospective future markets (Chan, 2011).

With artificial intelligence and machine learning, financial
market analysis has become better. These algorithms can be
used on large datasets to discover complex, but non-linear
relations that traditional models may otherwise overlook
(Goodfellow et al., 2016). Using the temporal dependencies in
financial data, long-term memory networks (LSTM)—a
particular type of RNN can predict the value of stocks (Fischer
& Krauss, 2018). Similarly, ensemble learning techniques for
financial forecasting generated more resilient adaptations to
uncertainty when models were combined (Ganaie et al., 2022;
Zhou, 2012).

As such, the objective of this work is to approach a forecast
system that exploits the latest artificial intelligence technology,
joining the time series tradition. For those keeping score, the
two main robots we have on radar to monitor US market
activity would be the S&P 500 or the NASDAQ. The S&P,
which is widely viewed as a barometer of the U.S. economy,
tracks the performance of 500 of the nation’s largest and most
important companies by market capitalization. The Nasdaq is
heavily weighted towards technology companies, which are
now far larger and more valuable parts of our world compared
to 2000; it is also much more volatile against stock market
movements (IDC, 2021).

The data analyzed in this paper cover various stages of the
economic cycles, from the Dot-com Bubble, through to the
subprime mortgage crisis of 2008, and more recently, COVID-
19. For them, it was gathered from January 2021 to August
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2024. This is where the large amount of data comes in; we can
learn how markets respond at different stages of the economy.
It also includes other variables and macroeconomic indicators
(e.g., interest rate, inflation rate, unemployment rate), given
their ability to drive market movements, as they are included to
have their effect on the market reflected in the data (Schubert,
2018). These factors must be accounted for in financial asset
markets because of their sensitivity to macroeconomic
conditions.

An important hurdle in such research is to come up with a
realistic forecast for rare events, say market crashes. While rare,
they indicate extreme destruction. These are pretty rare events,
and it's difficult for us to predict that using more traditional
types of models, which would have very small fluctuations up
or down. This is counteracted by oversampling and data
generation, and the dataset is more accurately able to predict
CRASH occurrences since it favours the instances of traffic
crash events (Napierala & Stefanowski, 2016).

Therefore, our study can be informative for the whole field of
market research. It also bestows the capability of building a
more reliable framework to predict an upcoming market crash.
This could have significant implications for the different actors.
This information could potentially help investors hedge
against losses and regulators craft better public policy measures
to limit the impact of crashes on the entire economy. The
preconditions of market instability would, consequently, be one
indication of how to foresee — and even thwart or at least
mitigate what is described as proactive financial risk
management (McNeil et al., 2015).

2. Literature Review and

Foundations

Conceptual

Because of the catastrophic economic, investor, and corporate
consequences of such events, comprehensive historical
research is the foundation of their investigation. Among the
most notorious is the 1929 Wall Street Crash, the 1987 Black
Monday, 2000°s dot com bubble and the ongoing recession
triggered by COVID-19. The criticalness of these crises
heavily disrupted the financial systems and also had significant
academic debate and empirical studies on what led to these.
Unfortunately, those approaches fail to alleviate the need for a
way to predict such crashes accurately. Traditional models riot
under(5), since they do not account for the non-linear behaviour
of market participants prior to such events (Brunnermeier &
Oehmke, 2013; Reinhart & Rogoff, 2009). Several literature
review curves include historical worth on market crashes, using
time series analysis for financial turbulence, and the
inadequacy of existing predictive markets. Chevallier et al.
(2019) also advocate for forecasting economies while adopting
advanced machine learning and artificial intelligence methods.

In  history, market crashes have associated with
macroeconomic variables, investor psychology and outside
shocks. For example, the 1929 Wall Street Crash was blamed
on speculation and credit expansion, lack of regulation. This
crash triggered the Great Depression, destroying immense
wealth and leading to a decade-long economic funk. Similarly,
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1987’s Black Monday resulted in a daily DJIA fall of 22.6%,
much of which was the result of automated trading and panic
selling. The 2000 dot-com bubble burst and as the overvalued
price of technology companies declined, the NASDAQ lost
more than half its value from March 2000 to October 2002.
Even more recently, the 2008 GFC was caused by collapse of
the US housing bubble that saw a 57% drop in the S&P 500 and
$30 trillion lost in global equity value. These experiences have
played a key role in revealing market cycles, investor reactions
and systemic risks.

Empirical research in financial markets can find is well
established using time series analysis to study the market
phenomenon and predictions. ARIMA models Box (2013), are
well established in forecasting future value based on historical
information with  capturing  volatility patterns more
specifically relevant. Both for characterizing short-term
stability and as a tool for predicting unpredictable market
shocks such as booms or busts, such models are weak and
inappropriate (Chan, 2011). GARCH models, introduced by
Bollerslev et al. (2018), are more effective in modeling
volatility clustering periods where high volatility tends to be
followed by further high volatility. However, these models face
limitations in predicting extreme market conditions, as shown
during the 2008 crisis, where GARCH models failed to
anticipate the intensity and timing of the crash (Ait-Sahalia et
al., 2015; Belasri & Ellaia, 2017).

Different theories help to understand financial markets and
their crashes. Chaos theory, which gained popularity in the
1970s, holds that financial markets are dynamic systems
perched on a tipping point, one that’s highly sensitive to initial
conditions, which means even tiny changes can result in big
reactions. This suggests the lack of linearity among the market
moves. Behavioral finance draws attention to the irrationality
of market players who are driven by fear, greed, and follow
others in a herd. The 1987 Black Monday crash, for instance,
largely chalked up as a result of panic selling, had no
identifiable macroeconomic trigger. Although econometrics
enhances statistical evidence results analysis, it is unlikely to
overestimate crash likelihoods and particularly during
unprecedented natural disaster outbreaks such as the COVID-
19 (Hwang et al., 2017).

While widely used, ARIMA and GARCH methods are deficient
in modelling the unpredictable nature of flash crashes.
However, they are ill-suited for modelling the inherently non-
linear dynamics of financial markets, as they make linear
assumptions (Zhou, 2012). In the case of these models,
generally, the historical data on which they depend are
explicitly limited and hence incapable of including new market
scenarios, particularly during the significant market disruption
period. For instance, as in the 2008 crisis, volatility's explosive
potential was undershot by GARCH models, and important
forecasting errors followed.

However, traditional models have limitations, and adaptive,
resilient approaches, particularly those based on machine
learning and artificial intelligence have become irresistible.
However, these advanced methods can already analyze massive
datasets and determine non-linear relationships well beyond
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human cognitive capabilities (Goodfellow et al., 2016). LSTM
networks (RNNs) have shown competence in identifying
temporal dependencies in the financial data sequence and, thus,
in stock price prediction (Ganaie et al., 2022). Robust
performance in the face of uncertainty is also shown with
Ensemble learning algorithms combining multiple models'
predictions. In addition, according to Zhang, Xia, and Seeger
(2021), machine learning models, such as LSTMs and random
forests, are superior to capturing real-time market dynamics
and non-linear trends in crash predictions.

Machine learning models have been criticized for their opacity
(non-transparency) and interpretability, despite their promising
capabilities. Machine learning models are typically described
as ‘black boxes’, in contrast to statistical theory driven models,
without simple explanation about what may be driving the
'movement' of the market. The opacity of such concepts
sometimes creates an impediment to apply them in practice,
and in the light of risks creating a difficulty for investors and
governments to act. These models are also sensitive to the
information they receive. They can also have extremely high
variation in prediction given the input, a feature that is
undesirable when predicting under different market conditions.

3. Data and Methodology
3.1. Data Collection

For both the Stock Twits and Twitter streams, the data was
collected daily from Yahoo Finance for two widely followed
financial indices: The S&P 500 Index and the NASDAQ
Composite Index (which has higher market volatility). In the
NASDAQ dataset, we observe data from 1 January 2021 to 31
August 2024; there are a total of 921 records and in the S&P
500 dataset, there are a total of 787 records. This may at least
in part explain why the actual observations of the two indices
differ, and why S&P 500 index does not have a value for every
day holidays or data anomalies which are frequent
characteristics of time series data (Finance, 2024a, 2024b).

The selected time frame was important because it helped to
capture one of the few periods where signs of a post-pandemic
global economic recovery were seen, or at a time exhibiting
increased risk and volatility. International banking and
financial markets were volatile due to unknown circumstances
such as the rise of interest rates, inflation issues, and other
political formations. This is a market that has been starved for
good news and it had an optimistic view of the potential for re-
openings and yet it couldn’t rally as markets resumed falling
faster later in the day.

Daily historical time series for volume, open, high, low and
close prices will facilitate pattern recognition in market crashes
and the observation of large price changes in response to
various factors; this is best suited for predicting models with
some sophisticated risk strategies familiar with those used on
major world markets.
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Date
29-Jun-21
28-Jun-21
25-Jun-21
24-Jun-21
23-Jun-21
22-Jun-21
21-Jun-21
18-Jun-21
17-Jun-21
16-Jun-21
15-Jun-21
14-Jun-21
11-Jun-21
10-Jun-21
9-Jun-21
8-Jun-21
7-Jun-21
4-Jun-21

Open
4293.81
4284.9
4274.45
4256.97
4224.61
4242.61
41734
4204.78
4203.37
4248.87
4255.28
4248.31
42429
4228.56
4232.99
4233.81
4273.81
4191.43

787 ROWS * 7 COLUMNS

Table 1. Historical Data for S&P 500

HISTORICAL DATA

Close
4291.8
4290.61
4280.7
4266.49
4246.44
4246.44
4224.79
4166.45
4218.86
4223.7
4246.59
4255.15
4247.44
4239.18
4219.55
4227.26
4226.52

S&P 500 (*GSPC)
JANUARY 2021 TO AUGUST 2024
High Low
4300.52 4287.04
4292.14 4274.67
4286.12 4271.16
4271.28 4256.97
4255.84 4217.27
4255.84 4217.27
4226.24 4173.4
4204.78 4164.4
4232.29 4184.05
4251.89 4202.45
4257.16 4238.35
4255.59 4234.07
4248.38 4217.04
4249.74 4220.34
4237.09 4218.74
4236.74 4208.41
4266.52 4215.66
4204.39 4167.93

Table 2. Historical Data for Nasdaq composite

4192.85

Adj Close

4291.8
4290.61

4280.7
4266.49
4246.44
4246.44
4224.79
4166.45
4218.86

4223.7
4246.59
4255.15
4247.44
4239.18
4219.55
4227.26
4226.52
4192.85

Source: Yahoo.com, 2024
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Volume
3707150000
4147890000
7341450000
3816660000
3828390000
3828390000
4128950000
6817010000
5312880000
4538350000
4048940000
4151200000
3816010000
4408210000
4713260000
4659620000
4476920000
4139790000
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MASDAQ Composite (MI{IC)

JAMUARY 2021 TO AUGUST 2024
Dwin Cipan High [ Close (O Ady Choss I Wodsme
Sop 4, 2004 LELS) byl 1725265 Wi ARA 6T 17 (a0 1708 30 5,001 B0 000
Sop 3, 2094 17585 45 17.6A5.AG TOGT S LEAR s VTN 30 513 870,000
AU 30, 034 1766048 L v 1748879 1T rae2 WIaee 5,531 VR0, 000
Aug T, 2024 T EW0ST 17788 3 7482 60 1758 43 1751843 5737 T80 000
Aing TR IPOD4 T7TER RO 1775004 VT AT A0 17 558 03 1766603 5211 930000
Aug TT, 02 17050 62 1T Ra e 1TETAST 1764 RS 17T B A4 2 R0 00
Aug F6, 024 17 BGT AL 17808 068 17645 65 WWranTT WWFFnaTIT 5,110, B0 D00
Mg F3, 2024 Wwirzya 1794137 1700 27 TATTTe LI ) 5, 30, B (00
Ang T2, 024 T ea3TI 1801760 1758815 17810, 35 17EI9.35 5,085 TR0 0500
Mg F1_ 024 17 A40. 51 17 86307 17 700 58 17 8k G5 1788 55 A S 150 000
Aug F0, 20004 17 BAR.05 L bR ) L R ] 7B B LEA LR B, 300, ARO, 000
Aug 19, FO34 ITE4aTa 1T aTTaa 17,686.58 1787677 WETGTT G 564, 300,000
Aiag 18, P24 17598 40 767465 1750283 1783 T2 ExTe 5,138 150,000
Mg 15, 024 17594 54 1780272 FArs.41 17,504 50 17 5048 50 5 ATR 0000
Aug 14, B2 TEIT6A 17073 TWOAZNT REAL - LA =R & SR ARG 00
Aug 13, 024 16,544, 74 LEA ) ey : ) 156,843, 9% WeT.a 17187.61 5, A58, W0,000
Mg 12, O34 18 783684 15,6056 7T5 18,699 39 a8 Fe0al 18 Fa0.61 4 B0 S50, 000
A 9, 2024 Vi A0 57 6,769 232 16,574 57 16, 745,30 18,745 30 5. T3 A W0000
Mg B 2024 16 408 27 DA 26 pLitk e 18680 O3 RGO 5 A5 BRO 00

921 Rows * 7 Columns

Source: Yahoo.com, 2024 observations for the S&P 500. The dataset spans the
. period from January 2021 to August 2024. Interpolating
3.2. Data Preprocessing data was necessary to resolve these disparities while

maintaining the quality and integrity of the results. Since

In financial time series analysis, data preparation is R : .
Y prep historical finance studies have shown that financial

essential, particularly when working with daily data from . .
indices such as the S&P 500 and NASDAQ. Due to non- market trends are often fat-tailed and erratic, the

trading days, the dataset utilized for this study includes (i) preprocessing pqrtion of the model gdditiqnally included
921 observations for the NASDAQ and (ii) 787 data transformation and normalization (Finance, 2024a,

2024b).
Return

.08
.04
-.04
-.08
-.12

| I 1] v | ] 11 v | 1] 1] v | 1 11

2021 2022 2023 2024

Fig. 1. Volatility Clustering for NASDAQ (2021-2024)
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The NASDAQ (2021-2024) Volatility Clustering graph
displays notable intervals of clustered volatility. Due to
post-pandemic market disturbances, the highest return
peaks at about 0.08 and the sharpest decrease hits -0.12 in
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early 2021. The NASDAQ index showed multiple
volatility increases from mid-2021 to mid-2024,
particularly in 2022, which was a sign of market
turbulence (Finance, 2024a, 2024b).

Return

a5

.10

.05

-.05

=10

-.15
100 200 300

W«fWWN M‘WW«

400 500 600 700

Fig. 2. Volatility Clustering for S&P 500 (2021-2024)

The S&P 500's response to economic instability during
this time is further highlighted by the "Volatility

200
160
120
80
40
20

0

-0.100 -0.075 -0.025 0.000

Clustering for S&P 500 (2021-2024)" graph, which shows
clustering of volatility with variations peaking around
0.12 and a minimum of -0.15. The use of GARCH models
to represent the volatility structure is justified by the
notable clustering of these swings, particularly around
important geopolitical and economic events.

Series: RETURN
Sample 1/04/2021 8/30/2024
Observations 921
Mean 0.000354
Median 0.007010
Maximum 0.073502
Minimum -0.106300
Std. Dev. 0.014613
Skewness -0.435011
Kurtosis 6.335515
Jarque-Bera 458.4511
0.025 0.075 0.075 | Probability 0.000000

Fig. 3. Fat Tail Distributions for NASDAQ and S&P 500.

Additionally, the "Fat Tail Distributions for NASDAQ"
show severe findings that go above the normal
distribution, with a high kurtosis value of 6.335. The
Jarque-Bera statistic of 458.4511 (p-value < 0.05)

confirms non-normality, and the occurrence of outliers—
returns as low as -0.10 and as high as 0.07—suggests fat-
tail behaviour, even if the returns are primarily centred
around 0 (Hansen et al., 2011).
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Series: RETURN
Sample 4 790
Observations 787

Fig. 4. Fat Tail Distributions for NASDAQ and S&P 500.

However, the S&P 500's fat tail distributions show an
even more noticeable fat tail, with extreme returns
ranging from -0.11 to 0.12, a skewness of 0.199, and a
kurtosis of 23.51. Strong departure from the normal
distribution is shown by the Jarque-Bera test result of
13797.94 with a significant p-value, highlighting the
necessity of models that can manage sharp fluctuations in
returns (Finance, 2024a, 2024b). The significance of
applying sophisticated preprocessing methods, including
volatility segmentation and multiscale stationarity testing,
to handle the non-linear and unpredictable character of
financial markets is shown by these statistical findings
and graphical representations. For precise market
forecasting and crash prediction during turbulent times,
GARCH models—which are designed to manage
volatility clustering and fat-tail

3.3. Model Selection

Because it incorporates the nonlinearities and shocks
typical of financial markets, selecting an accurate model
is crucial. Because ARIMA and GARCH models are
frequently employed to capture the complexity of
financial time series, particularly when it comes to
volatility and returns, they were chosen for this study. We
choose to employ models like AIC (Akaike Information
Criterion) and BIC (Bayesian information criterion) after
conducting stationarity tests and confirming diagnostic
criteria. In addition, the AR and MA terms details and lags
were discovered minutely based on these tests (Hansen et
al., 2011; Molnar, 2016)

Table 3. Stationary Check
Unit root test:
behavior—are crucial (Molnar, 2016)

Test Return Return
(Nasdaq) (S&P500)

ADF  (with

constant and

trend)

Mean 0.000443
Median 7.93e-05
Maximum 0.123279
Minimum -0.110748
Std. Dev. 0.012460
Skewness 0.199338
Kurtosis 23.50894
Jarque-Bera  13797.94
0.10 Probability  0.0000000

1(0) -31.6456 -21.62249

PP (with

constant and

trend)

1(0) -31.8356 -28.6932

A time series' stationarity is determined by the Phillips-
Perron (PP) and Augmented Dickey-Fuller (ADF) tests,
as shown in Table 3. Stationarity is a critical requirement,
particularly for ARIMA and GARCH models, since non-
stationary data can produce inaccurate forecasts. At a
significance level of 1%, the price data for the NASDAQ
and S&P 500 both have very negative ADF and PP test
statistics, suggesting that these time series have stationary
levels (I(0)). Both numbers are below the crucial value,
indicating that ARIMA and GARCH can model both
indexes. The NASDAQ value was -31.6456, and the S&P
500 value was -21.62249 (Durbin & Koopman, 2012).

Table 4. Selection of AR & MA and Lags

Index AR (Auto MA  (Moving Lag
Regressive) Average)

NASDAQ AR-2 MA-4 1

S&P500  AR-4 MA-2 1

The parameters selected for the NASDAQ and S&P 500
are displayed in the Selection of AR & MA and Lags table
4 for the ARIMA models. Whereas the S&P 500 once
more favoured to select (AR-4) but switched order this
time (MA -2), likewise at lag 1, the NASDAQ chose AR-
2 and MA 4 with a lag of (1). Using the Bayesian
Information Criterion (BIC) and the Akaike Information
Criterion (AIC), these values were selected to reduce
prediction error. For instance, a moving average (MA)
term of four is fitted in order to accommodate lagged
forecast errors, and two autoregressive (AR) terms in the
NASDAQ allow model delays from prior time periods.
On the other hand, Box (2013) state that the AR-4 and
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MA-2 combination in U.S. (S&P 500) data lowers short-
term forecast mistakes while improving the ability to
capture longer-term dependencies.

3.4. Rationale for the Hybrid Analytical Approach

The ARIMA and GARCH models were chosen because
they can handle nonlinear elements, whereas the first
model only covers the linear aspects of the markets. When
the returns contain intricate and nonlinear auto-
correlation structures, ARIMA models are useful. For
long-term return predictions, it is therefore perfect Box
(2013). It is important to remember, nevertheless, that in
order to fully represent the intricate patterns of volatility
clustering that frequently define financial markets, more
than only the use of ARIMA models as previously
mentioned is required. Since GARCH models are
designed to capture time-varying volatility, this is where
they are useful. Because volatility is clustered according
to long memory, with stronger volatility experienced in
some times than others (a phenomenon known as club
volatility), GARCH models allow the conditional
variance to be time-varying. Because it accounts for error
or volatility heteroscedasticity, the GARCH model was
employed. Since there was evidence of this behaviour in
both the NASDAQ and S&P 500 data, tests for volatility
clustering also supported the selection of GARCH. For
instance, when the market was only beginning to recover
from the pandemic's effects, the NASDAQ first displayed
strong returns before seeing a surge in volatility. The best
hybrid model for predicting market movements is this
dynamic behaviour, which uses GARCH and Auto
Regressive Integrated Moving Average (ARIMA) trend
prediction to describe volatility (Wei, 2013).

3.5. Optimization of Model Parameters

The parameters for the GARCH and ARIMA models were
estimated using maximum likelihood estimation. To
ensure that the root square error between the predicted and
actual volatility models does not differ significantly, we
compared the AIC and BIC values for various
configurations of the AR terms (p) and MA terms (q) in
the ARIMA case. In the GARCH case, we only minimised
overfitted parameters. In order for models to adapt to the
quickly shifting market conditions that occurred between
January 2021 and August 24 throughout manufacturing,
every stage of the process had to be optimised. GARCH
dynamically adjusted for volatility at each time utilising
data from recent periods, whereas ARIMA's lag terms
recorded the 8-week delayed influence of past market
moves (Ardia et al., 2019).

4. Predictive Modeling

This study used a GARCH technique to model the
NASDAQ and S&P 500 indexes' clustered behaviour and
volatility. Because volatility in financial time series data
tends to cluster, meaning that high volatility is typically
followed by more high volatility and low volatility is
typically followed by more of the same, the GARCH type
of model is especially well-suited for these types of data
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(Aue et al., 2017; Modarres & Ouarda, 2012). The
GARCH model is perfect for simulating market collapses
and notable moves because of its ability to capture
volatility with flexibility.

Table 5. GARCH Model Parameters for NASDAQ Return and
Volatility

Return on
Mean Equation

Constant 0.000646(1.032953)
One period lag of return -0.052584(-0.160397)
War 0.000496(0.664768)
Conditional Volatility Statistics

Constant 2.36E-06(2.098452) **
ARCH Effect 0.076616(3.940481) ***
GARCH Effect 0.912741(42.70745) ***

With a coefficient of -0.052584 and a z-value of -
0.160397, the one-period lag of return is not statistically
significant, according to the NASDAQ GARCH Model
Parameters, suggesting a poor correlation between the
return of the previous period and the present return.
Nonetheless, both the GARCH effect (0.912741; z =
42.70745; p < 0.01) and the ARCH effect (0.076616; z =
3.940481; p < 0.01) are statistically significant at the 1%
level, showing that historical volatility and shocks are
powerful predictors of the NASDAQ index's present
volatility. As is common in financial markets, sustained
volatility clustering is indicated by the ARCH and
GARCH coefficient total approaching 1.

Table 6. GARCH Model Parameters for S&P500 Return and
Volatility

Return on
Mean Equation

Constant 0.0007035(1.381052)
One period lag of return 0.3453658(8.175274) ***
War 0.0001404(0.220089)
Conditional Volatility Statistics

Constant 6.926e-06(6.399222) ***
ARCH Effect 0.2799053(11.2689) ***
GARCH Effect 0.6785330(28.8765) ***

*** Significant at 1% level, ** Significant at 5% level, *
Significant at 10% level

The one-period lag of return is also very significant
(0.3453658; z = 8.175274; p < 0.01) according to the
GARCH Model Parameters for the S&P 500, indicating a
higher level of autocorrelation in the S&P 500 than in the
NASDAQ. Both the GARCH effect (0.6785330; z =
28.8765; p <0.01) and the ARCH effect (0.2799053; z =
11.2689; p < 0.01) are statistically significant, indicating
that the S&P 500 exhibits volatility clustering. But
compared to NASDAQ, the S&P 500's GARCH
coefficient is smaller, indicating that shocks to the stock
have a shorter-lasting effect on volatility.

The GARCH and ARCH effects were highly significant
for both indices, indicating that these models are suitable
for estimating market behavior during bouts of volatility.



Shahidullah et al. (2025)
1-XY.

Furthermore, the higher value of the ARCH coefficient in
the S&P 500 model implies that the index is more
responsive to recent shocks. In comparison, the higher
value of the GARCH coefficient in the NASDAQ model
implies that volatility persists over time.

Dynamic GARCH extensions enable model integration
with other market sentiment factors, such as the Volatility
Index (VIX). By incorporating these indicators, the
GARCH model has a better ability to shift in response to
fluctuations in market sentiment and thus offers a timelier
response to the market conditions. This adjustment is vital,
especially during periods of decreased financial stability,
as sentiments shift rapidly, more so with fluctuations in
the market.

Wavelets were used to decompose the return series from
the time series into different frequencies to increase the
accuracy of the predictions. This feature of multi-
resolution analysis makes it easy to capture even minor
fluctuations in the market signals and thus distinguish
between short-term and long-term market signals. The
integration of wavelet transforms with GARCH helps
study the market signals at multiple resolutions,
enhancing the model’s capability to forecast extreme
movements in the market.

5. Results and Interpretation
5.1. Descriptive Statistics:

Prior to using sophisticated prediction algorithms, the
descriptive statistics for the January 2021-August 2024
returns of the NASDAQ and S&P 500 offer a fundamental
knowledge of the dataset.

Table 7. Descriptive Statistics for NASDAQ and S&P 500
Returns (2021-2024)

Return (Nasdaq) RETURN(S

Particular &P500)
Mean 0.000354 0.000443
Median 0.000710 7.93E-05
Maximum 0.073502 0.123279
Minimum -0.100530 -0.110748
Std. Dev. 0.014613 0.012460
Skewness -0.453031 0.199338
Kurtosis 6.335515 23.50894
Jarque-Bera 458.4511 13797.94
Probability 0.000000 0.000000
Sum 0.325618 0.348752
Sum Sq. Dev. 0.196450 0.122026
Observations 921 787

The S&P 500 has a little greater mean return (0.000443)
than the NASDAQ, which has a mean return of 0.000354.
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Although the figures are around zero, which reflects the
market's volatility during the post-pandemic recovery
phase, this shows that both indexes saw positive gains on
average over the time. The S&P 500 had a far larger
maximum return (0.123279), suggesting more dramatic
positive moves, than the NASDAQ, which had a
maximum return of 0.073502. However, the minimum
return indicates that the NASDAQ had more significant
negative fluctuations, with a value of -0.100530 as
opposed to the S&P 500's -0.110748.

The NASDAQ index, which is heavily weighted towards
technology, has a larger standard deviation of volatility
(0.014613) than the S&P 500 (0.012460). This is in line
with the NASDAQ index's typically higher risk (Aielli,
2013). The S&P 500 has positive skewness (0.199338),
indicating that NASDAQ had more frequent negative
returns, but the skewness numbers further demonstrate
that NASDAQ returns are negatively skewed (-0.453031).
The S&P 500 shows an exceptionally high value
(23.50894), suggesting fat tails and frequent extreme
occurrences. Lastly, both indices show considerable
kurtosis. With p-values of 0.000000, the Jarque-Bera test
statistics demonstrate that both series exhibit a
considerable departure from normalcy, underscoring the
need for volatility modelling (Bucci, 2020).

5.2. Model Performance:

The validity and effectiveness of the volatility models
employed in this work are assessed by the diagnostic tests
performed on the NASDAQ and the S&P 500 using the
ARCH and GARCH models. These tests are essential for
identifying any autocorrelation in the model residuals,
which might be linked to persistence in volatility or
unmodeled patterns. Along with numerical computations
and thorough explanations, the parts that follow offer a
thorough process and a critical evaluation of the
diagnostic test findings, including the ARCH LM test and
the correlogram for both indices.

Table 8. Diagnostic Test Results for NASDAQ:
ARCH+GARCH Effect and LM Test

Particular Nasdaq
ARCH+GARCH Effect 0.989357
ARCH LM (Obs* R-squared) 3.826744
Correlogram (Graph)

The ARCH + GARCH Effect for NASDAQ is 0.989357,
indicating a strong presence of volatility clustering. This
means that past volatility significantly affects current
volatility, making the model well-suited for capturing the
persistence of volatility shocks in NASDAQ, particularly
in response to market events and economic fluctuations
(Modarres & Ouarda, 2012). The ARCH LM test returns
an Obs*R-squared value of 3.826744, which suggests that
there is minimal heteroscedasticity left in the residuals.
This validates the GARCH model’s effectiveness in
filtering out the majority of the volatility patterns in the
NASDAQ dataset.
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Sample: 1/08/2021 8/30/2024
Q-statistic probabilities adjusted for 6 ARMA terms

Autocorrelation Partial Correlation AC PAC Q-Stat Prob*

0.002 0.002 0.0050
-0.002 -0.002 0.0105
0.011 0.011 0.1147
-0.004 -0.004 0.1314
-0.009 -0.009 0.2033
0.008 0.008 0.2697
0.006 0.006 0.3071 0.579
-0.015 -0.015 0.5276 0.768
0.052 0.052 3.0219 0.388
-0.020 -0.020 3.3845 0.496
0.022 0.023 3.8394 0.573

I
I
I
I
I
1
I
I

i

-0.014 -0.013 4.7684 0.688

1

2

3

4

5

6

7

8

9

| 10

| 11

I 12 -0.028 -0.030 4.5933 0.597
! 13

| 14 -0.015 -0.014 4.9701 0.761
I 15 -0.038 -0.038 6.2888 0.711
| 16 -0.037 -0.037 7.5572 0.672
I 17 -0.038 -0.037 8.9061 0.631
| 18 0.040 0.037 10.390 0.582
| 19 -0.023 -0.021 10.905 0.619
I 20 0.011 0.008 11.021 0.684
I

I

I

I

I

|

|

I

|

|

21 0.014 0.016 11.195 0.739
22 -0.052 -0.052 13.739 0.618
23 -0.035 -0.032 14.903 0.602
24 0.018 0.019 15.194 0.649
25 -0.052 -0.051 17.755 0.539
26 -0.024 -0.019 18.290 0.568
27 0.025 0.016 18.879 0.593
28 -0.022 -0.019 19.342 0.624
29 0.028 0.023 20.074 0.637
30 -0.026 -0.031 20.704 0.656
31 0.056 0.059 23.733 0.535
32 -0.010 -0.012 23.824 0.586
33 -0.014 -0.015 23.999 0.630
34 -0.008 -0.005 24.065 0.678
35 0.000 -0.001 24.066 0.726
36 -0.015 -0.018 24.272 0.760

*Probabilities may not be valid for this equation specification.

Fig. 5. Autocorrelation and Partial Correlation with Q-Statistics for ARMA Terms- NASDAQ.The correlogram for NASDAQ (as
shown in the graph) provides further evidence of the model's performance. At lag 1, the autocorrelation (AC) and partial
autocorrelation (PAC) values are both 0.002, with a Q-Stat of 0.0105 and a p-value of 0.920, indicating that there is no
significant autocorrelation in the residuals. This pattern holds across multiple lags, as seen at lag 6, where the AC is 0.006
and the PAC is 0.007, with a p-value of 0.768. The Q-Stat probabilities remain high across all lags, suggesting that the
residuals behave like white noise, meaning that the GARCH model has captured the underlying volatility structure
without leaving any significant patterns in the residuals. This indicates that the model is appropriate for forecasting future
market behavior in NASDAQ (Aielli, 2013).

Table 9. Diagnostic Test (S&P500)

Particular S&P500
ARCH LM (Obs* R-squared) 0.569883
Correlogram (Graph)

The diagnostic test of the S&P 500 reveals that it follows a different volatility pattern than NASDAQ. The ARCH LM
test for the S&P 500 yields an Obs*R-squared of 0.569883, much lower than NASDAQ. This implies that there is even
less indication of heteroscedasticity remaining in the residuals of the S&P 500, meaning the model has captured most of
the volatility structure in the S&P 500 data. This lower level of heteroscedasticity shows that fluctuations following a
cluster have less effect on the S&P 500 compared to NASDAQ, which is more focused and part of a broader index like
the S&P 500 (Patton & Sheppard, 2015).
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Q-statistic probabilities adjusted for 6 ARMA terms

Autocorrelation

Partial Correlation

AC FPAC Q-Stat Prob™

i i
i i
il o
1 lifl
1 1
1 1
1 1
11 1
1 1
1 1
il il
11 11
11 11
1 1
1 1
q o
1 1
1 i
i} 1
1 1
1 1
q i
1 1
1 1
1 1
o o
1 1
11 1
1 1
1 1
1 1
11 11
11 1
11 11
o o
i q

-0.041 -0.041 1.2967
-0.043 -0.045 2.7902
-0.078 -0.082 76185
-0.024 -0.033 8.0675
. . 8.7462

-0.022 -0.030 9.1481

0.022 0.017 95180 0.002

0.015 0.018 9.7036 0.008

0.046 0.048 11.422 0.010
10 0.023 0031 118862 0.018
11 -0.047 -0.035 13600 0.018
12 0.008 0.013 13645 0.034
13 -0.001 0.003 13647 0.058
14 -0.017 -0.024 13891 0.085
15 -0.022 -0.025 14297 0.112
16 -0.062 -0.066 17.393 0.066
17 0.001 -0.016 17.395 0.097
18 -0.031 -0.045 18170 0.111
19 0.062 0046 21279 0.068
20 -0.016 -0.016 21.493 0.090
21 0.042 0046 22951 0.085
22 -0.054 -0.048 25312 0.065
23 0.019 0029 25602 0082
24 -0.000 0.005 25602 0.109
25 -0.001 0.007 25603 0.142
26 -0.072 -0.075 29812 0073
27 0.037 0036 30958 0074
28 -0.014 -0.029 31125 0.094
29 0029 0017 31820 0.104
30 0.041 0042 33219 0100

Do =l@mm & Wk =
=]
=]
[
w
=]
<2
w

33 0.013 0020 34390 0155
34 0005 0005 34412 0.188
35 -0.085 -0.073 40403 0078
36 -0.045 -0.049 42065 0.071

*Probabilities may not be valid for this equation specification.

Fig. 6. Autocorrelation and Partial Correlation with Q-Statistics for ARMA Terms- S&P 500.

The correlogram for the S&P 500 shows some evidence
of autocorrelation at relatively short lags. For example, at
lag 1, the AC and PAC values are -0.041, and the Q-Stat
is 1.2967. The p-value is calculated to be less than 0.255,
implying non-significant autocorrelation at this lag level.
However, by lag 6, the Q-stat increases to 9.1481, with p
= 0.002, showing some evidence of persistence or
autocorrelation at this lag. This suggests that, while fitting
the GARCH model, some of the short-term volatility in
the S&P 500 may have been overlooked. At lag 12, the Q-
stat significantly increases to 13.6447, with p = 0.018,
indicating some autocorrelation at intermediate lags,
which can be explained by short-term market fluctuations
or responses to world economic events not fully addressed
by the model. However, by lag 30, the Q-Stat is 36.0427,
with a p-value of 0.188, supporting the idea that
autocorrelation reduces at more significant lags (Aielli,
2013).

5.3. Correlogram of Residuals for NASDAQ and S&P
500

The correlogram analysis forms an integral part of the
investigation as it provides information regarding the fit
of the models for both indices. In examining the

correlogram of NASDAQ, there is no sign of
autocorrelation or partial autocorrelation at any lag,
indicating that most of the volatility patterns have been
effectively removed by the model. The minimal
autocorrelation results in volatility clustering and market
shocks that are new to the model, leaving behind white
noise in the residuals. This enhances the model's
reliability in predicting future market crashes in
NASDAQ, particularly during periods of high volatility
(Modarres & Ouarda, 2012).

The model generally does well for the S&P 500, too.
However, some slight short-term autocorrelation effects
are apparent at lags 6 and 12 in its correlogram (implying
that it may be necessary to adjust further). The auto-
correlated residuals in these models are explained by the
external economic shocks or fundamental
macroeconomic indicators that might impact the SP500
price, which was not considered while constructing the
model. Adding exogenous regressors, such as shifts in
policy rates or international macro news, might also help
obtain a better fit and reduce the remaining
autocorrelations (Patton & Sheppard, 2015).
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The ARCH + GARCH effect for NASDAQ is nearly 0.95,
indicating high volatility persistence, which is more likely
for a tech-heavy index like NASDAQ, as market trends
and technological factors influence it. Similarly, as shown
in the figure below, the low ARCH LM (Obs*R-squared)
value for the S&P 500 indicates less volatility clustering
and a smoother volatility pattern than NASDAQ, likely
due to the broader index's lower volatility.

However, the correlogram for the S&P 500 reveals some
room for improvement, especially at shorter lag values.
This suggests that although the GARCH model captures
the explicit volatility pattern, other patterns may need to
be included, particularly regarding short-term economic
shocks. These results indicate that the current model more
accurately represents NASDAQ's volatility dynamics,
while residual autocorrelation at some lags suggests that
the S&P 500 model could be further improved.

6. Forecasting Results

Analyses were performed using the GARCH model for
market crash forecasting to visualize the future behavior
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of the market, particularly during extreme events, such as
crashes of the NASDAQ and S&P 500 indices. The results
are presented as visualizations using various features,
such as return predictions, to estimate the level of risk and
variance forecasts that show the likelihood of future
market fluctuations. Below, the forecasting results of the
two indices are discussed using statistical analysis and
projections.

6.1. Forecast for S&P 500

The forecast (S&P 500) graph shows predicted returns
(RETURNF) against actual returns. In this case, the
model seems to perform satisfactorily in predicting the
rate of returns, with a maximum error of +2 standard
errors. The forecasted returns are somewhat similar to the
actual returns, but some discrepancies are observed at lags
of 100 and 300, where large market movements are noted.
The model does well in identifying these extreme
movements, although the amount of forecasted variance
during these periods is quite large.

700

500 600 700

1+ 2 S:F.

Fig. 7. Predicted and Actual S&P 500 Returns with +2 Standard Errors .

The forecast of wvariance (S&P 500) graph also
demonstrates the sequence of gross forecasted variance by
the S&P 500 index, where the variance increases over
time but jumps sharply at lags 100 and 300 to a level of
0.006. These sharp increases in variance suggest a
potential periodicity of high volatility, implying that the

market is unstable during these periods. The higher
variance indicates actual market crashes, or at least deep
corrections, could occur in some markets. The regular rise
suggests that the S&P 500 will likely undergo several
periods of elevated market risk, following historical
trends during global uncertainty (Aue et al., 2017).
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Fig. 8. Forecast of variance (S&P 500)

6.2. Forecast for NASDAQ

The forecast graph for NASDAQ also shows that
estimated returns are almost identical to actual returns, as
seen in the following figure. The forecast is mainly within
the confidence bounds for most time series; however, as
with the S&P 500, massive movements are still more

.08

.04

.00

difficult for the model to capture accurately. Although the
sharp declines are only partially reflected, the overall
picture of forecasting changes in stock prices is presented
very effectively.

-.04

-.08

RETURNF

Actuals + 2 S.E.

Fig. 9. The forecast graph for NASDAQ

The predicted variance, particularly in the NASDAQ
chart, is a world apart from that of the S&P 500. The
NASDAQ variance begins at a very small value and
increases rapidly to peak around a forecasted variance of
roughly 0.00024. This implies that NASDAQ’s expected

volatility is much smaller than S&P 500. The variance
begins to flatten out just when it reaches the beginning
point, which reveals that the short-term fluctuation of
NASDAQ is weaker, and the long tails of the distribution
are heavier.

13



Shahidullah et al. (2025)
1-XY.

.00024

.00020

.00016

.00012 /

.00008

TBFLI, 1(2), pp.

Forecast of Variance

Fig. 10. Forecasted Conditional Variance Over Time.

7. Cross-Validation with Historical Crashes

This cross-validation was used to evaluate the GARCH
model's ability to forecast financial crashes, using real
and present crash data. With such a method, this paper
recognizes the extent to which the model is able to
correctly predict the market crashes, and therefore
ensures adequate robustness testing.

7.1. S&P 500 Historical Crashes Validation

Some historical market crashes for the S&P 500 index are
the 2008 financial crisis and the COVID-19 crash in
March 2020. The predicted variance has a sharp rise in the
forecast graph for S&P500, especially at lag 100 and lag
300, which can be seen from the value of the variance is
equal to .006. The market taking big steps after a major
drop and getting more variable after that are what
occurred during such high volatility periods in the past.
For example, the surge at lag 100 could reflect global
inflation fears in early 2021, while that at lag 300 might
be linked to the reaction of geopolitical tensions or
recovery from the COVID-19 market shocks.

The comparison indicates that the GARCH model is very
efficient in detecting the increased volatility periods,
especially in predicting periods that could lead to market
crashes. Huge variance periods have historically come
prior to huge market downturns, and the model
predicting them makes it more trustworthy. In addition,
the bursts in the variance spikes are consistent with
expected increased uncertainty time periods and lend
support to the timing model for crash prediction
(Modarres & Ouarda, 2012).

7.2. NASDAQ Historical Crashes Validation

Historical collapses like the COVID-19 disaster in 2020
and the dot-com bubble in 2000 serve as important
benchmarks for cross-validation for the NASDAQ. The
model forecasts a comparatively consistent variance level

0f 0.00024 in the Forecast (NASDAQ) graph, suggesting
less expected dramatic volatility. While the model does
not forecast massive variance spikes like the S&P 500, it
does highlight short-term swings that are consistent with
historical patterns of moderate instability. Historically, the
NASDAQ has been more volatile amid disturbances in
the IT industry.

In the lack of significant variance spikes, the NASDAQ
forecast's fluctuation pattern also aligns with the post-
COVID-19 era, which is marked by very low volatility in
technology equities. As the author also noted, this model
has a flaw in that it fails to account for the tremendous
variation that is anticipated to arise in the NASDAQ index
as a result of technological improvements. However, this
approach works better for normal stock market moves that
are rather easy to forecast (Aue et al., 2017). However,
aside from total crashes, the model is useful in detecting
patterns of possible market swings early on.

7.3. Evaluation of Model Accuracy

The cross-validation with historical crashes, however,
shows that the GARCH model indeed captures most of
the main volatile trends, especially in the S&P 500. The
predicted variances (over the rest of our selected lag
ranges) reviewed around long-term lags (i.e.,
gene/rally100), and volatility monitored over short terms
show large spikes at times, coinciding with market
crashes. This is possibly not particularly surprising when
it comes to NASDAQ data — given its tech-led nature, the
index has historically had fewer extreme spikes of
variance (recent years aside) than other sectors; although
it can be pretty volatile or subject to shock (think back to
the days/weeks/months of dot-com bubble fuelled
movements that race across our charts as dark periods
from history as if we are in a period of extreme market
sell-off).

14



Shahidullah et al. (2025)
1-XY.

Numerically, the sudden increase in variance for the S&P
500 to what? 0.006 or so is pretty dramatic: you expect it,
but hey, even now we’re seeing some bad news. In the
NASDAQ case, however, it’s more like things are settling
(mean reversion) while the market still drifts within a
standard deviation (~1 day). The quantitative differences
between the two indices demonstrate how effective
GARCH is in distinguishing markets with higher crash
potential (S&P 500) from stable ones. This is an
important differentiator for investors who want to
employ diversification as a strategy to manage risk in their
portfolios.

8. Conclusion

Through integrating time series techniques, i.e., ARIMA
and GARCH models of market volatility for the first time
in the case of NASDAQ and S&P 500 indices, this study

presents a new approach to predetermine financial crashes.

The study also proposed a new way of linking
econometric and some machine learning concepts, such
as wavelet multiresolution decomposition or dynamic
GARCH models, which lead to more accurate
forecasting in the context of non-linearity and market
jumps.

The use of GARCH in this study to properly capture
volatility clustering accounts for why more observations
drawn from a unique distribution are probably realized
lower (upper) tails than those observed within high-
volatility regimes. The NASDAQ and S&P 500 market
show the same pattern in the model, where high risks exist
prior to market crash. And, of course, the multi-resolution
approach to market signals is also available through
wavelet-based decomposition and enables short-term
changes within long-term trends to be seen. This feature
has helped analyze indices like the S&P 500 that react to
larger macro shocks and NASDAQ, where its jitters often
originate from the tech side. The model is also checked
for accuracy with cross-validation on previous market
breakdowns. It correctly predicted spikes in volatility that
were associated with previous market downturns,
including the 2008 financial crisis and a plunge during
the COVID-19 epidemic. This makes it more likely in the
case of an alternative way to anticipate future market
ruptures, our model would be able to forecast potential
shocks in variance during financial upheaval. This
predictive model leverages cutting-edge machine learning
methods alongside fundamental economic factors to
study past catastrophes in financial markets. GARCH
models and wavelet decomposition techniques were
enabled for analyzing financial trends with the detection
of clustered volcanoes. This paper provides a better means
of detecting financial market collapses on the right time
scales, which could improve the response to such risks. It

has relevance for investors, risk managers, and policy -

makers. By predicting when the market may face further
instability, these results can help to minimize losses and
prescribe preemptive economic measures.
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