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The research involves examining how financial markets, particularly the NASDAQ and S&P 500 

indices, react when under stress, as well as applying advanced time series techniques in an 

attempt to predict crashes. Accurate prediction of crashes is important due to the tremendous 

impact financial market collapses, including the 2008 and COVID-19 epidemics, have on the 

worldwide economy. To model non-linear market dynamics, the study combines dynamic 

GARCH extensions and wavelet-based time series decomposition with ARIMA and GARCH 

models to forecast market volatility. The sample period ranged from January 2021 to August 

2024, with total observations of 787 and 921 for the S&P500 and NASDAQ, respectively. The 

selection of the ARIMA and GARCH models was confirmed by the ADF and PP tests to 

determine whether the time series is stationary. The GARCH model with the GARCH effect of 

0.912741 has most certainly accommodated the volatility clustering phenomenon, due to which 

an episode of high (low) volatility was followed by another episode of the same kind and 

successive spikes in the volatility, especially in the case of NASDAQ. The volatility persistence 

of the S&P 500 was lower (0.6785330 GARCH effect). For a relatively small level 

autoregressive table, the forecasts demonstrate that the variance of S&P 500 substantially 

increases in high volatility periods for most by up to 0.006. The NASDAQ was somewhat more 

persistent, as indicated by a variance of 0.00024. These findings illustrate how efficiently the 

proposed forecasting model is able to predict market crashes and offer valuable information for 

investors and policymakers. 
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1. Introduction 

Financial markets are highly volatile, often characterized by 

market crashes and high highs. And these episodes of asset 

value losses in very short periods have a huge impact on 

financial institutions, individual fortunes, and world economies. 

These crashes have been difficult to foresee by economists, 

politicians as well and investors across the world. Recent years 

have seen big progress in the application of machine learning 

and time series analysis, opening up new opportunities for 

building structural models that can predict such disasters. The 

purpose of this paper is to develop a methodology to utilize 

these recently developed techniques for predicting the collapses 

(increase in volatility) in financial markets with reference 

to...106-8EHA: NASDAQ and S&P 500 as important 

aggregated indices. 

 

There were seemingly frequent significant global financial 

market meltdowns, each having its own causes and 

consequences. For instance, the Great Depression, an extended 

period of economic decline that impacted economies globally, 

ensued in the wake of the 1929 stock market crash on Wall 

Street (Bernanke, 2000). Stock share prices on the Dow Jones 

Industrial Average dropped 25% in just two days because of 

the crash. It was one of the worst days in modern economic 

history (Tooze, 2018). More recently, the S&P 500 index 

plunged 57% during the October 2007 to March 2009 collapse 

after the American housing bubble burst and led to a Global 

Transactions on Banking, Finance, and Leadership 

Informatics  

"Volume 1, Issue 2, Year 2025" 
website: https://www.c5k.com 

https://doi.org/10.63471/tbfli_25002
mailto:shahidbd2004@gmail.com
https://doi.org/10.63471/tbfli_25002


Shahidullah et al. (2025)                                                                                                                                                 TBFLI, 1(2), pp. 1-XY.  

 

2 
 

Financial Crisis in 2008. The crisis wiped out approximately 

$30 trillion from global equity markets and precipitated deep 

economic recessions in different countries (Brunnermeier, 

2009; Reinhart & Rogoff, 2009). 

One of the swiftest bear markets in history hit world financial 

markets yet again when to the COVID-19 outbreak in 2020. 

Courtesy to the pandemic's causes, i.e., forced lockdowns and 

economic shutdowns, the S&P 500 had shared value erosion of 

≈34% in February-March 2020 (Baker et al., 2020). But thanks 

to the extraordinary measures deployed by governments and 

central banks to backstop fiscal and monetary policy around the 

globe during the crash, it's been a much quicker recovery than 

we've seen in previous crises. It reflects how the financial 

markets have become so much more complex that we cannot 

so easily predict how they would respond (Gopinath, 2020). 

Despite the frequency and serious consequences of these 

crashes, predicting them is an ever-elusive white whale. 

ARIMA and GARCH models have been the dominant 

traditional econometric methods for analyzing financial time 

series data for a few decades. This is of particular use in the 

modeling of volatility and trends in finance. For example, 

GARCH models are often used to describe the volatility 

clusters. The higher volatility (up-going or down-going) series 

in this pattern exhibits more frequent occurrence of large 

emotion-free price change (Creal et al., 2013; Vulandari & 

Rokhmati, 2015). These models do, however, contain design 

problems, particularly about the intensity and timing of market 

crashes(Chan, 2011). They often use historical data, but it may 

not fully capture what new market conditions mean for 

prospective future markets (Chan, 2011). 

With artificial intelligence and machine learning, financial 

market analysis has become better. These algorithms can be 

used on large datasets to discover complex, but non-linear 

relations that traditional models may otherwise overlook 

(Goodfellow et al., 2016). Using the temporal dependencies in 

financial data, long-term memory networks (LSTM)—a 

particular type of RNN can predict the value of stocks (Fischer 

& Krauss, 2018). Similarly, ensemble learning techniques for 

financial forecasting generated more resilient adaptations to 

uncertainty when models were combined (Ganaie et al., 2022; 

Zhou, 2012). 

As such, the objective of this work is to approach a forecast 

system that exploits the latest artificial intelligence technology, 

joining the time series tradition. For those keeping score, the 

two main robots we have on radar to monitor US market 

activity would be the S&P 500 or the NASDAQ. The S&P, 

which is widely viewed as a barometer of the U.S. economy, 

tracks the performance of 500 of the nation’s largest and most 

important companies by market capitalization. The Nasdaq is 

heavily weighted towards technology companies, which are 

now far larger and more valuable parts of our world compared 

to 2000; it is also much more volatile against stock market 

movements (IDC, 2021). 

The data analyzed in this paper cover various stages of the 

economic cycles, from the Dot-com Bubble, through to the 

subprime mortgage crisis of 2008, and more recently, COVID-

19. For them, it was gathered from January 2021 to August 

2024. This is where the large amount of data comes in; we can 

learn how markets respond at different stages of the economy. 

It also includes other variables and macroeconomic indicators 

(e.g., interest rate, inflation rate, unemployment rate), given 

their ability to drive market movements, as they are included to 

have their effect on the market reflected in the data (Schubert, 

2018). These factors must be accounted for in financial asset 

markets because of their sensitivity to macroeconomic 

conditions. 

An important hurdle in such research is to come up with a 

realistic forecast for rare events, say market crashes. While rare, 

they indicate extreme destruction. These are pretty rare events, 

and it's difficult for us to predict that using more traditional 

types of models, which would have very small fluctuations up 

or down. This is counteracted by oversampling and data 

generation, and the dataset is more accurately able to predict 

CRASH occurrences since it favours the instances of traffic 

crash events (Napierala & Stefanowski, 2016). 

Therefore, our study can be informative for the whole field of 

market research. It also bestows the capability of building a 

more reliable framework to predict an upcoming market crash. 

This could have significant implications for the different actors. 

This information could potentially help investors hedge 

against losses and regulators craft better public policy measures 

to limit the impact of crashes on the entire economy. The 

preconditions of market instability would, consequently, be one 

indication of how to foresee – and even thwart or at least 

mitigate what is described as proactive financial risk 

management (McNeil et al., 2015). 

 

2. Literature Review and Conceptual 

Foundations  

Because of the catastrophic economic, investor, and corporate 

consequences of such events, comprehensive historical 

research is the foundation of their investigation. Among the 

most notorious is the 1929 Wall Street Crash, the 1987 Black 

Monday, 2000’s dot com bubble and the ongoing recession 

triggered by COVID-19. The criticalness of these crises 

heavily disrupted the financial systems and also had significant 

academic debate and empirical studies on what led to these. 

Unfortunately, those approaches fail to alleviate the need for a 

way to predict such crashes accurately. Traditional models riot 

under(5), since they do not account for the non-linear behaviour 

of market participants prior to such events  (Brunnermeier & 

Oehmke, 2013; Reinhart & Rogoff, 2009). Several literature 

review curves include historical worth on market crashes, using 

time series analysis for financial turbulence, and the 

inadequacy of existing predictive markets. Chevallier et al. 

(2019) also advocate for forecasting economies while adopting 

advanced machine learning and artificial intelligence methods. 

In history, market crashes have associated with 

macroeconomic variables, investor psychology and outside 

shocks. For example, the 1929 Wall Street Crash was blamed 

on speculation and credit expansion, lack of regulation. This 

crash triggered the Great Depression, destroying immense 

wealth and leading to a decade-long economic funk. Similarly, 
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1987’s Black Monday resulted in a daily DJIA fall of 22.6%, 

much of which was the result of automated trading and panic 

selling. The 2000 dot-com bubble burst and as the overvalued 

price of technology companies declined, the NASDAQ lost 

more than half its value from March 2000 to October 2002. 

Even more recently, the 2008 GFC was caused by collapse of 

the US housing bubble that saw a 57% drop in the S&P 500 and 

$30 trillion lost in global equity value. These experiences have 

played a key role in revealing market cycles, investor reactions 

and systemic risks. 

Empirical research in financial markets can find is well 

established using time series analysis to study the market 

phenomenon and predictions. ARIMA models Box (2013), are 

well established in forecasting future value based on historical 

information with capturing volatility patterns more 

specifically relevant. Both for characterizing short-term 

stability and as a tool for predicting unpredictable market 

shocks such as booms or busts, such models are weak and 

inappropriate (Chan, 2011). GARCH models, introduced by 

Bollerslev et al. (2018), are more effective in modeling 

volatility clustering periods where high volatility tends to be 

followed by further high volatility. However, these models face 

limitations in predicting extreme market conditions, as shown 

during the 2008 crisis, where GARCH models failed to 

anticipate the intensity and timing of the crash (Aït-Sahalia et 

al., 2015; Belasri & Ellaia, 2017). 

Different theories help to understand financial markets and 

their crashes. Chaos theory, which gained popularity in the 

1970s, holds that financial markets are dynamic systems 

perched on a tipping point, one that’s highly sensitive to initial 

conditions, which means even tiny changes can result in big 

reactions. This suggests the lack of linearity among the market 

moves. Behavioral finance draws attention to the irrationality 

of market players who are driven by fear, greed, and follow 

others in a herd. The 1987 Black Monday crash, for instance, 

largely chalked up as a result of panic selling, had no 

identifiable macroeconomic trigger. Although econometrics 

enhances statistical evidence results analysis, it is unlikely to 

overestimate crash likelihoods and particularly during 

unprecedented natural disaster outbreaks such as the COVID-

19  (Hwang et al., 2017). 

While widely used, ARIMA and GARCH methods are deficient 

in modelling the unpredictable nature of flash crashes. 

However, they are ill-suited for modelling the inherently non-

linear dynamics of financial markets, as they make linear 

assumptions (Zhou, 2012). In the case of these models, 

generally, the historical data on which they depend are 

explicitly limited and hence incapable of including new market 

scenarios, particularly during the significant market disruption 

period. For instance, as in the 2008 crisis, volatility's explosive 

potential was undershot by GARCH models, and important 

forecasting errors followed. 

However, traditional models have limitations, and adaptive, 

resilient approaches, particularly those based on machine 

learning and artificial intelligence have become irresistible. 

However, these advanced methods can already analyze massive 

datasets and determine non-linear relationships well beyond 

human cognitive capabilities (Goodfellow et al., 2016). LSTM 

networks (RNNs) have shown competence in identifying 

temporal dependencies in the financial data sequence and, thus, 

in stock price prediction (Ganaie et al., 2022). Robust 

performance in the face of uncertainty is also shown with 

Ensemble learning algorithms combining multiple models' 

predictions. In addition, according to Zhang, Xia, and Seeger 

(2021), machine learning models, such as LSTMs and random 

forests, are superior to capturing real-time market dynamics 

and non-linear trends in crash predictions. 

Machine learning models have been criticized for their opacity 

(non-transparency) and interpretability, despite their promising 

capabilities. Machine learning models are typically described 

as ‘black boxes’, in contrast to statistical theory driven models, 

without simple explanation about what may be driving the 

'movement' of the market. The opacity of such concepts 

sometimes creates an impediment to apply them in practice, 

and in the light of risks creating a difficulty for investors and 

governments to act. These models are also sensitive to the 

information they receive. They can also have extremely high 

variation in prediction given the input, a feature that is 

undesirable when predicting under different market conditions. 

3. Data and Methodology 

3.1. Data Collection 

For both the Stock Twits and Twitter streams, the data was 

collected daily from Yahoo Finance for two widely followed 

financial indices: The S&P 500 Index and the NASDAQ 

Composite Index (which has higher market volatility). In the 

NASDAQ dataset, we observe data from 1 January 2021 to 31 

August 2024; there are a total of 921 records and in the S&P 

500 dataset, there are a total of 787 records. This may at least 

in part explain why the actual observations of the two indices 

differ, and why S&P 500 index does not have a value for every 

day holidays or data anomalies which are frequent 

characteristics of time series data (Finance, 2024a, 2024b). 

The selected time frame was important because it helped to 

capture one of the few periods where signs of a post-pandemic 

global economic recovery were seen, or at a time exhibiting 

increased risk and volatility. International banking and 

financial markets were volatile due to unknown circumstances 

such as the rise of interest rates, inflation issues, and other 

political formations. This is a market that has been starved for 

good news and it had an optimistic view of the potential for re-

openings and yet it couldn’t rally as markets resumed falling 

faster later in the day. 

Daily historical time series for volume, open, high, low and 

close prices will facilitate pattern recognition in market crashes 

and the observation of large price changes in response to 

various factors; this is best suited for predicting models with 

some sophisticated risk strategies familiar with those used on 

major world markets. 
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Table 1. Historical Data for S&P 500

 Source: Yahoo.com, 2024

 

Table 2. Historical Data for Nasdaq composite 

HISTORICAL DATA 

S&P 500 (^GSPC) 

JANUARY 2021 TO AUGUST 2024 

Date Open High Low Close Adj Close Volume 

29-Jun-21 4293.81 4300.52 4287.04 4291.8 4291.8 3707150000 

28-Jun-21 4284.9 4292.14 4274.67 4290.61 4290.61 4147890000 

25-Jun-21 4274.45 4286.12 4271.16 4280.7 4280.7 7341450000 

24-Jun-21 4256.97 4271.28 4256.97 4266.49 4266.49 3816660000 

23-Jun-21 4224.61 4255.84 4217.27 4246.44 4246.44 3828390000 

22-Jun-21 4242.61 4255.84 4217.27 4246.44 4246.44 3828390000 

21-Jun-21 4173.4 4226.24 4173.4 4224.79 4224.79 4128950000 

18-Jun-21 4204.78 4204.78 4164.4 4166.45 4166.45 6817010000 

17-Jun-21 4203.37 4232.29 4184.05 4218.86 4218.86 5312880000 

16-Jun-21 4248.87 4251.89 4202.45 4223.7 4223.7 4538350000 

15-Jun-21 4255.28 4257.16 4238.35 4246.59 4246.59 4048940000 

14-Jun-21 4248.31 4255.59 4234.07 4255.15 4255.15 4151200000 

11-Jun-21 4242.9 4248.38 4217.04 4247.44 4247.44 3816010000 

10-Jun-21 4228.56 4249.74 4220.34 4239.18 4239.18 4408210000 

9-Jun-21 4232.99 4237.09 4218.74 4219.55 4219.55 4713260000 

8-Jun-21 4233.81 4236.74 4208.41 4227.26 4227.26 4659620000 

7-Jun-21 4273.81 4266.52 4215.66 4226.52 4226.52 4476920000 

4-Jun-21 4191.43 4204.39 4167.93 4192.85 4192.85 4139790000 

787 ROWS * 7 COLUMNS 
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Source: Yahoo.com, 2024 

3.2. Data Preprocessing 

In financial time series analysis, data preparation is 

essential, particularly when working with daily data from 

indices such as the S&P 500 and NASDAQ. Due to non-

trading days, the dataset utilized for this study includes (i) 

921 observations for the NASDAQ and (ii) 787 

observations for the S&P 500. The dataset spans the 

period from January 2021 to August 2024. Interpolating 

data was necessary to resolve these disparities while 

maintaining the quality and integrity of the results. Since 

historical finance studies have shown that financial 

market trends are often fat-tailed and erratic, the 

preprocessing portion of the model additionally included 

data transformation and normalization (Finance, 2024a, 

2024b). 

 

Fig. 1. Volatility Clustering for NASDAQ (2021-2024) 
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The NASDAQ (2021–2024) Volatility Clustering graph 

displays notable intervals of clustered volatility. Due to 

post-pandemic market disturbances, the highest return 

peaks at about 0.08 and the sharpest decrease hits -0.12 in 

early 2021. The NASDAQ index showed multiple 

volatility increases from mid-2021 to mid-2024, 

particularly in 2022, which was a sign of market 

turbulence (Finance, 2024a, 2024b). 

 

Fig. 2. Volatility Clustering for S&P 500 (2021-2024) 

 

 

 

The S&P 500's response to economic instability during 

this time is further highlighted by the "Volatility 

Clustering for S&P 500 (2021-2024)" graph, which shows 

clustering of volatility with variations peaking around 

0.12 and a minimum of -0.15. The use of GARCH models 

to represent the volatility structure is justified by the 

notable clustering of these swings, particularly around 

important geopolitical and economic events. 

 

Fig. 3. Fat Tail Distributions for NASDAQ and S&P 500. 

Additionally, the "Fat Tail Distributions for NASDAQ" 

show severe findings that go above the normal 

distribution, with a high kurtosis value of 6.335. The 

Jarque-Bera statistic of 458.4511 (p-value < 0.05) 

confirms non-normality, and the occurrence of outliers—

returns as low as -0.10 and as high as 0.07—suggests fat-

tail behaviour, even if the returns are primarily centred 

around 0 (Hansen et al., 2011). 
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Fig. 4. Fat Tail Distributions for NASDAQ and S&P 500.

However, the S&P 500's fat tail distributions show an 

even more noticeable fat tail, with extreme returns 

ranging from -0.11 to 0.12, a skewness of 0.199, and a 

kurtosis of 23.51. Strong departure from the normal 

distribution is shown by the Jarque-Bera test result of 

13797.94 with a significant p-value, highlighting the 

necessity of models that can manage sharp fluctuations in 

returns (Finance, 2024a, 2024b). The significance of 

applying sophisticated preprocessing methods, including 

volatility segmentation and multiscale stationarity testing, 

to handle the non-linear and unpredictable character of 

financial markets is shown by these statistical findings 

and graphical representations. For precise market 

forecasting and crash prediction during turbulent times, 

GARCH models—which are designed to manage 

volatility clustering and fat-tail 

 3.3. Model Selection 

Because it incorporates the nonlinearities and shocks 

typical of financial markets, selecting an accurate model 

is crucial. Because ARIMA and GARCH models are 

frequently employed to capture the complexity of 

financial time series, particularly when it comes to 

volatility and returns, they were chosen for this study. We 

choose to employ models like AIC (Akaike Information 

Criterion) and BIC (Bayesian information criterion) after 

conducting stationarity tests and confirming diagnostic 

criteria. In addition, the AR and MA terms details and lags 

were discovered minutely based on these tests (Hansen et 

al., 2011; Molnár, 2016) 

Table 3. Stationary Check 

Unit root test: 

behavior—are crucial (Molnár, 2016) 

Test Return 

(Nasdaq) 

Return 

(S&P500) 

ADF (with 

constant and 

trend) 

  

I (0) -31.6456 -21.62249 

PP (with 

constant and 

trend) 

  

I (0) -31.8356 -28.6932 

 

A time series' stationarity is determined by the Phillips-

Perron (PP) and Augmented Dickey-Fuller (ADF) tests, 

as shown in Table 3. Stationarity is a critical requirement, 

particularly for ARIMA and GARCH models, since non-

stationary data can produce inaccurate forecasts. At a 

significance level of 1%, the price data for the NASDAQ 

and S&P 500 both have very negative ADF and PP test 

statistics, suggesting that these time series have stationary 

levels (I(0)). Both numbers are below the crucial value, 

indicating that ARIMA and GARCH can model both 

indexes. The NASDAQ value was -31.6456, and the S&P 

500 value was -21.62249 (Durbin & Koopman, 2012). 

Table 4. Selection of AR & MA and Lags 

Index AR (Auto 

Regressive) 

MA (Moving 

Average) 

Lag 

NASDAQ AR-2 MA-4 1 

S&P 500 AR-4 MA-2 1 

 

The parameters selected for the NASDAQ and S&P 500 

are displayed in the Selection of AR & MA and Lags table 

4 for the ARIMA models. Whereas the S&P 500 once 

more favoured to select (AR-4) but switched order this 

time (MA -2), likewise at lag 1, the NASDAQ chose AR-

2 and MA 4 with a lag of (1). Using the Bayesian 

Information Criterion (BIC) and the Akaike Information 

Criterion (AIC), these values were selected to reduce 

prediction error. For instance, a moving average (MA) 

term of four is fitted in order to accommodate lagged 

forecast errors, and two autoregressive (AR) terms in the 

NASDAQ allow model delays from prior time periods.  

On the other hand, Box (2013) state that the AR-4 and 
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MA-2 combination in U.S. (S&P 500) data lowers short-

term forecast mistakes while improving the ability to 

capture longer-term dependencies. 

3.4. Rationale for the Hybrid Analytical Approach 

The ARIMA and GARCH models were chosen because 

they can handle nonlinear elements, whereas the first 

model only covers the linear aspects of the markets. When 

the returns contain intricate and nonlinear auto-

correlation structures, ARIMA models are useful. For 

long-term return predictions, it is therefore perfect Box 

(2013). It is important to remember, nevertheless, that in 

order to fully represent the intricate patterns of volatility 

clustering that frequently define financial markets, more 

than only the use of ARIMA models as previously 

mentioned is required. Since GARCH models are 

designed to capture time-varying volatility, this is where 

they are useful.  Because volatility is clustered according 

to long memory, with stronger volatility experienced in 

some times than others (a phenomenon known as club 

volatility), GARCH models allow the conditional 

variance to be time-varying.  Because it accounts for error 

or volatility heteroscedasticity, the GARCH model was 

employed. Since there was evidence of this behaviour in 

both the NASDAQ and S&P 500 data, tests for volatility 

clustering also supported the selection of GARCH. For 

instance, when the market was only beginning to recover 

from the pandemic's effects, the NASDAQ first displayed 

strong returns before seeing a surge in volatility. The best 

hybrid model for predicting market movements is this 

dynamic behaviour, which uses GARCH and Auto 

Regressive Integrated Moving Average (ARIMA) trend 

prediction to describe volatility (Wei, 2013). 

3.5. Optimization of Model Parameters 

The parameters for the GARCH and ARIMA models were 

estimated using maximum likelihood estimation. To 

ensure that the root square error between the predicted and 

actual volatility models does not differ significantly, we 

compared the AIC and BIC values for various 

configurations of the AR terms (p) and MA terms (q) in 

the ARIMA case. In the GARCH case, we only minimised 

overfitted parameters. In order for models to adapt to the 

quickly shifting market conditions that occurred between 

January 2021 and August 24 throughout manufacturing, 

every stage of the process had to be optimised. GARCH 

dynamically adjusted for volatility at each time utilising 

data from recent periods, whereas ARIMA's lag terms 

recorded the 8-week delayed influence of past market 

moves (Ardia et al., 2019). 

4. Predictive Modeling 

This study used a GARCH technique to model the 

NASDAQ and S&P 500 indexes' clustered behaviour and 

volatility. Because volatility in financial time series data 

tends to cluster, meaning that high volatility is typically 

followed by more high volatility and low volatility is 

typically followed by more of the same, the GARCH type 

of model is especially well-suited for these types of data 

(Aue et al., 2017; Modarres & Ouarda, 2012). The 

GARCH model is perfect for simulating market collapses 

and notable moves because of its ability to capture 

volatility with flexibility. 

Table 5. GARCH Model Parameters for NASDAQ Return and 

Volatility 

 Return on 

Mean Equation 

Constant 0.000646(1.032953) 

One period lag of return -0.052584(-0.160397) 

War 0.000496(0.664768) 

Conditional Volatility Statistics 

Constant 2.36E-06(2.098452) ** 

ARCH Effect 0.076616(3.940481) *** 

GARCH Effect 0.912741(42.70745) *** 

 

With a coefficient of -0.052584 and a z-value of -

0.160397, the one-period lag of return is not statistically 

significant, according to the NASDAQ GARCH Model 

Parameters, suggesting a poor correlation between the 

return of the previous period and the present return. 

Nonetheless, both the GARCH effect (0.912741; z = 

42.70745; p < 0.01) and the ARCH effect (0.076616; z = 

3.940481; p < 0.01) are statistically significant at the 1% 

level, showing that historical volatility and shocks are 

powerful predictors of the NASDAQ index's present 

volatility. As is common in financial markets, sustained 

volatility clustering is indicated by the ARCH and 

GARCH coefficient total approaching 1. 

Table 6. GARCH Model Parameters for S&P500 Return and 

Volatility 

 Return on 

Mean Equation 

Constant 0.0007035(1.381052) 

One period lag of return 0.3453658(8.175274) *** 

War 0.0001404(0.220089) 

Conditional Volatility Statistics 

Constant 6.926e-06(6.399222) *** 

ARCH Effect  0.2799053(11.2689) *** 

GARCH Effect 0.6785330(28.8765) *** 

 

*** Significant at 1% level, ** Significant at 5% level, * 

Significant at 10% level 

The one-period lag of return is also very significant 

(0.3453658; z = 8.175274; p < 0.01) according to the 

GARCH Model Parameters for the S&P 500, indicating a 

higher level of autocorrelation in the S&P 500 than in the 

NASDAQ. Both the GARCH effect (0.6785330; z = 

28.8765; p < 0.01) and the ARCH effect (0.2799053; z = 

11.2689; p < 0.01) are statistically significant, indicating 

that the S&P 500 exhibits volatility clustering. But 

compared to NASDAQ, the S&P 500's GARCH 

coefficient is smaller, indicating that shocks to the stock 

have a shorter-lasting effect on volatility. 

The GARCH and ARCH effects were highly significant 

for both indices, indicating that these models are suitable 

for estimating market behavior during bouts of volatility. 
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Furthermore, the higher value of the ARCH coefficient in 

the S&P 500 model implies that the index is more 

responsive to recent shocks. In comparison, the higher 

value of the GARCH coefficient in the NASDAQ model 

implies that volatility persists over time. 

Dynamic GARCH extensions enable model integration 

with other market sentiment factors, such as the Volatility 

Index (VIX). By incorporating these indicators, the 

GARCH model has a better ability to shift in response to 

fluctuations in market sentiment and thus offers a timelier 

response to the market conditions. This adjustment is vital, 

especially during periods of decreased financial stability, 

as sentiments shift rapidly, more so with fluctuations in 

the market.  

 Wavelets were used to decompose the return series from 

the time series into different frequencies to increase the 

accuracy of the predictions. This feature of multi-

resolution analysis makes it easy to capture even minor 

fluctuations in the market signals and thus distinguish 

between short-term and long-term market signals. The 

integration of wavelet transforms with GARCH helps 

study the market signals at multiple resolutions, 

enhancing the model’s capability to forecast extreme 

movements in the market. 

5. Results and Interpretation 

5.1. Descriptive Statistics: 

Prior to using sophisticated prediction algorithms, the 

descriptive statistics for the January 2021–August 2024 

returns of the NASDAQ and S&P 500 offer a fundamental 

knowledge of the dataset. 

Table 7. Descriptive Statistics for NASDAQ and S&P 500 

Returns (2021-2024) 

Particular 

Return (Nasdaq) RETURN(S

&P500) 

 Mean 0.000354 0.000443 

 Median 0.000710 7.93E-05 

 Maximum 0.073502 0.123279 

 Minimum -0.100530 -0.110748 

 Std. Dev. 0.014613 0.012460 

 Skewness -0.453031 0.199338 

 Kurtosis 6.335515 23.50894 

   

 Jarque-Bera 458.4511 13797.94 

 Probability 0.000000 0.000000 

   

 Sum 0.325618 0.348752 

 Sum Sq. Dev. 0.196450 0.122026 

   

 Observations 921 787 

 

The S&P 500 has a little greater mean return (0.000443) 

than the NASDAQ, which has a mean return of 0.000354. 

Although the figures are around zero, which reflects the 

market's volatility during the post-pandemic recovery 

phase, this shows that both indexes saw positive gains on 

average over the time.  The S&P 500 had a far larger 

maximum return (0.123279), suggesting more dramatic 

positive moves, than the NASDAQ, which had a 

maximum return of 0.073502. However, the minimum 

return indicates that the NASDAQ had more significant 

negative fluctuations, with a value of -0.100530 as 

opposed to the S&P 500's -0.110748.  

The NASDAQ index, which is heavily weighted towards 

technology, has a larger standard deviation of volatility 

(0.014613) than the S&P 500 (0.012460). This is in line 

with the NASDAQ index's typically higher risk (Aielli, 

2013). The S&P 500 has positive skewness (0.199338), 

indicating that NASDAQ had more frequent negative 

returns, but the skewness numbers further demonstrate 

that NASDAQ returns are negatively skewed (-0.453031).  

The S&P 500 shows an exceptionally high value 

(23.50894), suggesting fat tails and frequent extreme 

occurrences. Lastly, both indices show considerable 

kurtosis. With p-values of 0.000000, the Jarque-Bera test 

statistics demonstrate that both series exhibit a 

considerable departure from normalcy, underscoring the 

need for volatility modelling (Bucci, 2020).  

5.2. Model Performance: 

The validity and effectiveness of the volatility models 

employed in this work are assessed by the diagnostic tests 

performed on the NASDAQ and the S&P 500 using the 

ARCH and GARCH models. These tests are essential for 

identifying any autocorrelation in the model residuals, 

which might be linked to persistence in volatility or 

unmodeled patterns. Along with numerical computations 

and thorough explanations, the parts that follow offer a 

thorough process and a critical evaluation of the 

diagnostic test findings, including the ARCH LM test and 

the correlogram for both indices. 

Table 8. Diagnostic Test Results for NASDAQ: 

ARCH+GARCH Effect and LM Test 

Particular Nasdaq 

ARCH+GARCH Effect 0.989357 

ARCH LM (Obs* R-squared) 3.826744 

Correlogram (Graph) 

The ARCH + GARCH Effect for NASDAQ is 0.989357, 

indicating a strong presence of volatility clustering. This 

means that past volatility significantly affects current 

volatility, making the model well-suited for capturing the 

persistence of volatility shocks in NASDAQ, particularly 

in response to market events and economic fluctuations 

(Modarres & Ouarda, 2012). The ARCH LM test returns 

an Obs*R-squared value of 3.826744, which suggests that 

there is minimal heteroscedasticity left in the residuals. 

This validates the GARCH model’s effectiveness in 

filtering out the majority of the volatility patterns in the 

NASDAQ dataset. 
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Fig. 5. Autocorrelation and Partial Correlation with Q-Statistics for ARMA Terms- NASDAQ.The correlogram for NASDAQ (as 

shown in the graph) provides further evidence of the model's performance. At lag 1, the autocorrelation (AC) and partial 

autocorrelation (PAC) values are both 0.002, with a Q-Stat of 0.0105 and a p-value of 0.920, indicating that there is no 

significant autocorrelation in the residuals. This pattern holds across multiple lags, as seen at lag 6, where the AC is 0.006 

and the PAC is 0.007, with a p-value of 0.768. The Q-Stat probabilities remain high across all lags, suggesting that the 

residuals behave like white noise, meaning that the GARCH model has captured the underlying volatility structure 

without leaving any significant patterns in the residuals. This indicates that the model is appropriate for forecasting future 

market behavior in NASDAQ (Aielli, 2013). 

Table 9. Diagnostic Test (S&P500) 

Particular S&P500 

ARCH LM (Obs* R-squared) 0.569883 

Correlogram (Graph) 

 

The diagnostic test of the S&P 500 reveals that it follows a different volatility pattern than NASDAQ. The ARCH LM 

test for the S&P 500 yields an Obs*R-squared of 0.569883, much lower than NASDAQ. This implies that there is even 

less indication of heteroscedasticity remaining in the residuals of the S&P 500, meaning the model has captured most of 

the volatility structure in the S&P 500 data. This lower level of heteroscedasticity shows that fluctuations following a 

cluster have less effect on the S&P 500 compared to NASDAQ, which is more focused and part of a broader index like 

the S&P 500 (Patton & Sheppard, 2015). 
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Fig. 6. Autocorrelation and Partial Correlation with Q-Statistics for ARMA Terms- S&P 500.

The correlogram for the S&P 500 shows some evidence 

of autocorrelation at relatively short lags. For example, at 

lag 1, the AC and PAC values are -0.041, and the Q-Stat 

is 1.2967. The p-value is calculated to be less than 0.255, 

implying non-significant autocorrelation at this lag level. 

However, by lag 6, the Q-stat increases to 9.1481, with p 

= 0.002, showing some evidence of persistence or 

autocorrelation at this lag. This suggests that, while fitting 

the GARCH model, some of the short-term volatility in 

the S&P 500 may have been overlooked. At lag 12, the Q-

stat significantly increases to 13.6447, with p = 0.018, 

indicating some autocorrelation at intermediate lags, 

which can be explained by short-term market fluctuations 

or responses to world economic events not fully addressed 

by the model. However, by lag 30, the Q-Stat is 36.0427, 

with a p-value of 0.188, supporting the idea that 

autocorrelation reduces at more significant lags (Aielli, 

2013). 

5.3. Correlogram of Residuals for NASDAQ and S&P 

500 

The correlogram analysis forms an integral part of the 

investigation as it provides information regarding the fit 

of the models for both indices. In examining the 

correlogram of NASDAQ, there is no sign of 

autocorrelation or partial autocorrelation at any lag, 

indicating that most of the volatility patterns have been 

effectively removed by the model. The minimal 

autocorrelation results in volatility clustering and market 

shocks that are new to the model, leaving behind white 

noise in the residuals. This enhances the model's 

reliability in predicting future market crashes in 

NASDAQ, particularly during periods of high volatility 

(Modarres & Ouarda, 2012). 

The model generally does well for the S&P 500, too. 

However, some slight short-term autocorrelation effects 

are apparent at lags 6 and 12 in its correlogram (implying 

that it may be necessary to adjust further). The auto-

correlated residuals in these models are explained by the 

external economic shocks or fundamental 

macroeconomic indicators that might impact the SP500 

price, which was not considered while constructing the 

model. Adding exogenous regressors, such as shifts in 

policy rates or international macro news, might also help 

obtain a better fit and reduce the remaining 

autocorrelations (Patton & Sheppard, 2015). 
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The ARCH + GARCH effect for NASDAQ is nearly 0.95, 

indicating high volatility persistence, which is more likely 

for a tech-heavy index like NASDAQ, as market trends 

and technological factors influence it. Similarly, as shown 

in the figure below, the low ARCH LM (Obs*R-squared) 

value for the S&P 500 indicates less volatility clustering 

and a smoother volatility pattern than NASDAQ, likely 

due to the broader index's lower volatility. 

However, the correlogram for the S&P 500 reveals some 

room for improvement, especially at shorter lag values. 

This suggests that although the GARCH model captures 

the explicit volatility pattern, other patterns may need to 

be included, particularly regarding short-term economic 

shocks. These results indicate that the current model more 

accurately represents NASDAQ's volatility dynamics, 

while residual autocorrelation at some lags suggests that 

the S&P 500 model could be further improved. 

6. Forecasting Results 

Analyses were performed using the GARCH model for 

market crash forecasting to visualize the future behavior 

of the market, particularly during extreme events, such as 

crashes of the NASDAQ and S&P 500 indices. The results 

are presented as visualizations using various features, 

such as return predictions, to estimate the level of risk and 

variance forecasts that show the likelihood of future 

market fluctuations. Below, the forecasting results of the 

two indices are discussed using statistical analysis and 

projections. 

6.1. Forecast for S&P 500 

The forecast (S&P 500) graph shows predicted returns 

(RETURNF) against actual returns. In this case, the 

model seems to perform satisfactorily in predicting the 

rate of returns, with a maximum error of ±2 standard 

errors. The forecasted returns are somewhat similar to the 

actual returns, but some discrepancies are observed at lags 

of 100 and 300, where large market movements are noted. 

The model does well in identifying these extreme 

movements, although the amount of forecasted variance 

during these periods is quite large. 

 

Fig. 7. Predicted and Actual S&P 500 Returns with ±2 Standard Errors .

The forecast of variance (S&P 500) graph also 

demonstrates the sequence of gross forecasted variance by 

the S&P 500 index, where the variance increases over 

time but jumps sharply at lags 100 and 300 to a level of 

0.006. These sharp increases in variance suggest a 

potential periodicity of high volatility, implying that the 

market is unstable during these periods. The higher 

variance indicates actual market crashes, or at least deep 

corrections, could occur in some markets. The regular rise 

suggests that the S&P 500 will likely undergo several 

periods of elevated market risk, following historical 

trends during global uncertainty (Aue et al., 2017). 
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Fig. 8. Forecast of variance (S&P 500) 

6.2. Forecast for NASDAQ 

The forecast graph for NASDAQ also shows that 

estimated returns are almost identical to actual returns, as 

seen in the following figure. The forecast is mainly within 

the confidence bounds for most time series; however, as 

with the S&P 500, massive movements are still more 

difficult for the model to capture accurately. Although the 

sharp declines are only partially reflected, the overall 

picture of forecasting changes in stock prices is presented 

very effectively. 

 

 

Fig. 9. The forecast graph for NASDAQ 

The predicted variance, particularly in the NASDAQ 

chart, is a world apart from that of the S&P 500. The 

NASDAQ variance begins at a very small value and 

increases rapidly to peak around a forecasted variance of 

roughly 0.00024. This implies that NASDAQ’s expected 

volatility is much smaller than S&P 500. The variance 

begins to flatten out just when it reaches the beginning 

point, which reveals that the short-term fluctuation of 

NASDAQ is weaker, and the long tails of the distribution 

are heavier. 
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Fig. 10.  Forecasted Conditional Variance Over Time. 

7. Cross-Validation with Historical Crashes 

This cross-validation was used to evaluate the GARCH 

model's ability to forecast financial crashes, using real 

and present crash data. With such a method, this paper 

recognizes the extent to which the model is able to 

correctly predict the market crashes, and therefore 

ensures adequate robustness testing. 

7.1. S&P 500 Historical Crashes Validation 

Some historical market crashes for the S&P 500 index are 

the 2008 financial crisis and the COVID-19 crash in 

March 2020. The predicted variance has a sharp rise in the 

forecast graph for S&P500, especially at lag 100 and lag 

300, which can be seen from the value of the variance is 

equal to .006. The market taking big steps after a major 

drop and getting more variable after that are what 

occurred during such high volatility periods in the past. 

For example, the surge at lag 100 could reflect global 

inflation fears in early 2021, while that at lag 300 might 

be linked to the reaction of geopolitical tensions or 

recovery from the COVID-19 market shocks. 

The comparison indicates that the GARCH model is very 

efficient in detecting the increased volatility periods, 

especially in predicting periods that could lead to market 

crashes. Huge variance periods have historically come 

prior to huge market downturns, and the model 

predicting them makes it more trustworthy. In addition, 

the bursts in the variance spikes are consistent with 

expected increased uncertainty time periods and lend 

support to the timing model for crash prediction 

(Modarres & Ouarda, 2012). 

7.2. NASDAQ Historical Crashes Validation 

Historical collapses like the COVID-19 disaster in 2020 

and the dot-com bubble in 2000 serve as important 

benchmarks for cross-validation for the NASDAQ. The 

model forecasts a comparatively consistent variance level 

of 0.00024 in the Forecast (NASDAQ) graph, suggesting 

less expected dramatic volatility. While the model does 

not forecast massive variance spikes like the S&P 500, it 

does highlight short-term swings that are consistent with 

historical patterns of moderate instability. Historically, the 

NASDAQ has been more volatile amid disturbances in 

the IT industry. 

In the lack of significant variance spikes, the NASDAQ 

forecast's fluctuation pattern also aligns with the post-

COVID-19 era, which is marked by very low volatility in 

technology equities. As the author also noted, this model 

has a flaw in that it fails to account for the tremendous 

variation that is anticipated to arise in the NASDAQ index 

as a result of technological improvements. However, this 

approach works better for normal stock market moves that 

are rather easy to forecast (Aue et al., 2017). However, 

aside from total crashes, the model is useful in detecting 

patterns of possible market swings early on. 

7.3. Evaluation of Model Accuracy 

The cross-validation with historical crashes, however, 

shows that the GARCH model indeed captures most of 

the main volatile trends, especially in the S&P 500. The 

predicted variances (over the rest of our selected lag 

ranges) reviewed around long-term lags (i.e., 

gene/rally100), and volatility monitored over short terms 

show large spikes at times, coinciding with market 

crashes. This is possibly not particularly surprising when 

it comes to NASDAQ data – given its tech-led nature, the 

index has historically had fewer extreme spikes of 

variance (recent years aside) than other sectors; although 

it can be pretty volatile or subject to shock (think back to 

the days/weeks/months of dot-com bubble fuelled 

movements that race across our charts as dark periods 

from history as if we are in a period of extreme market 

sell-off). 
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Numerically, the sudden increase in variance for the S&P 

500 to what?  0.006 or so is pretty dramatic: you expect it, 

but hey, even now we’re seeing some bad news. In the 

NASDAQ case, however, it’s more like things are settling 

(mean reversion) while the market still drifts within a 

standard deviation (~1 day). The quantitative differences 

between the two indices demonstrate how effective 

GARCH is in distinguishing markets with higher crash 

potential (S&P 500) from stable ones. This is an 

important differentiator for investors who want to 

employ diversification as a strategy to manage risk in their 

portfolios. 

8. Conclusion  

Through integrating time series techniques, i.e., ARIMA 

and GARCH models of market volatility for the first time 

in the case of NASDAQ and S&P 500 indices, this study 

presents a new approach to predetermine financial crashes. 

The study also proposed a new way of linking 

econometric and some machine learning concepts, such 

as wavelet multiresolution decomposition or dynamic 

GARCH models, which lead to more accurate 

forecasting in the context of non-linearity and market 

jumps. 

The use of GARCH in this study to properly capture 

volatility clustering accounts for why more observations 

drawn from a unique distribution are probably realized 

lower (upper) tails than those observed within high-

volatility regimes. The NASDAQ and S&P 500 market 

show the same pattern in the model, where high risks exist 

prior to market crash. And, of course, the multi-resolution 

approach to market signals is also available through 

wavelet-based decomposition and enables short-term 

changes within long-term trends to be seen. This feature 

has helped analyze indices like the S&P 500 that react to 

larger macro shocks and NASDAQ, where its jitters often 

originate from the tech side. The model is also checked 

for accuracy with cross-validation on previous market 

breakdowns. It correctly predicted spikes in volatility that 

were associated with previous market downturns, 

including the 2008 financial crisis and a plunge during 

the COVID-19 epidemic. This makes it more likely in the 

case of an alternative way to anticipate future market 

ruptures, our model would be able to forecast potential 

shocks in variance during financial upheaval. This 

predictive model leverages cutting-edge machine learning 

methods alongside fundamental economic factors to 

study past catastrophes in financial markets. GARCH 

models and wavelet decomposition techniques were 

enabled for analyzing financial trends with the detection 

of clustered volcanoes. This paper provides a better means 

of detecting financial market collapses on the right time 

scales, which could improve the response to such risks. It 

has relevance for investors, risk managers, and policy‐

makers. By predicting when the market may face further 

instability, these results can help to minimize losses and 

prescribe preemptive economic measures. 
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