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In the United States, early detection of diseases is critical to ensuring timely and effective
treatment, as many conditions, if not diagnosed promptly, can become untreatable or even fatal.
As a result, there is a growing reliance on advanced technologies to analyze complex medical
data, reports, and images with both speed and precision. In many cases, subtle abnormalities in
medical imaging may go unnoticed by the human eye, which is where machine learning (ML)
has become indispensable. ML techniques are increasingly used in healthcare for data driven
decision making, uncovering hidden patterns and anomalies that traditional methods might miss.
Although developing such algorithms is complex, the greater challenge lies in optimizing them
for higher accuracy while reducing processing time. Over the years, the integration of ML into
biomedical research has significantly advanced the field, paving the way for innovations like
precision medicine, which customizes treatments based on a patient’s genetic profile. Today,
machine learning supports nearly every stage of delivery, from extracting critical information
from electronic health records to diagnosing diseases through medical image analysis. Its role
extends to patient management, resource optimization, and treatment development. Particularly,
deep learning, powered by modern high-performance computing, has shown remarkable
accuracy and reliability in these applications. It is now evident that in the U.S. healthcare system,
computational biology and clinical decision making are deeply intertwined with machine
learning, making it a core component of artificial intelligence in medicine. In this paper, the aim
is to explore the current applications, challenges, and potential of machine learning in supporting
healthcare decision-making in the United States, with a focus on diagnosis, medical imaging,
and personalized treatment strategies.
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1. Introduction

Artificial Intelligence consists of a wide range of methods and
technologies including machine learning, machine reasoning,
and robotics. Among these, machine learning has gained the

most attention in the United States healthcare sector due to its
extensive applicability in solving complex medical challenges
(Alanazi, 2022). This review places emphasis on machine
learning, which is being applied through various algorithms to
support healthcare systems in clinical decision making. The use
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of machine learning in clinical contexts is considered
revolutionary, as it enables systems to analyze vast amounts of
medical data and generate informed recommendations for
improving or maintaining patient health.

When applied in healthcare, machine learning systems collect
and interpret a range of patient-related data, such as clinical
records, medical images, and genetic profiles (Shehab & others,
2022). These systems reason through the information to suggest
potential actions that can lead to better health outcomes.
Initially, machine learning models are not highly accurate or
efficient. However, through repetitive exposure to similar tasks
and the accumulation of data, the models gradually improve
their accuracy and reliability. This process of learning from data
allows the systems to adapt and perform more effectively over
time.

Clinical decision-making supported by machine learning can
follow two main approaches. The first is the intuitive or rapid
method, which relies on pattern recognition and is often used
in emergency medical situations (Jayatilake & Ganegoda,
2021). While this approach enables quick responses, it carries
a higher risk of error and may overlook important details. The
second approach is more deliberate and analytical, requiring
time and intellectual resources. Although slower, it produces
more accurate and comprehensive outcomes. Both methods
benefit significantly from machine learning, which enhances
the precision and speed of decision-making by processing and
interpreting large and complex datasets (Sanchez-Martinez &
others, 2022).

Healthcare data in the United States is increasingly
heterogeneous, coming from sources such as electronic health
records, medical imaging systems, wearable devices, and real-
time monitoring technologies (Babarinde et al., 2023). As the
volume and complexity of this data grow, the need for advanced
computational tools becomes critical. Machine learning
provides solutions that efficiently manage and analyze such
data, facilitating improvements in diagnostic accuracy, patient
care, and overall healthcare delivery.

The applications of machine learning in healthcare extend far
beyond disease diagnosis and prediction. In the United States,
these technologies support critical activities such as patient
management, treatment research, hospital resource allocation,
public health planning, and policymaking. The COVID-19
pandemic highlighted the urgent need for intelligent systems
capable of handling diverse healthcare tasks under time
constraints (Debnath & others, 2020). During this period,
machine learning proved valuable in supporting rapid testing,
treatment planning, and outbreak forecasting. This has led to a
growing interest in the field of emergency machine learning,
which aims to develop models that respond effectively to
healthcare crises.

Despite its many advantages, the use of artificial intelligence in
healthcare brings forward ethical considerations. These include
concerns about the transparency and accountability of decisions
made by algorithms, the risk of biased outcomes, and the
shifting roles of healthcare professionals. In the United States,
such concerns have resulted in regulatory measures that restrict
the autonomous use of machine learning for final clinical
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decisions (Lysaght et al., 2019). Instead, these tools are
employed as decision support systems that assist healthcare
providers without replacing human judgment. This cautious
approach ensures that the use of technology remains ethical and
aligned with clinical standards.

Artificial intelligence systems in healthcare are capable of
performing predictive analysis by filtering, organizing, and
identifying patterns in large datasets (Ahmed et al., 2020).
These datasets are often drawn from multiple sources and
require sophisticated models to produce accurate and timely
insights. While these systems are not permitted to make final
decisions independently in most jurisdictions, they play a
critical role in supporting clinicians through enhanced
diagnostic capabilities and treatment recommendations.

This review aims to examine the role of machine learning in
transforming computational decision-making in healthcare.
The discussion begins with the initial introduction of machine
learning in computational biology and follows its evolution to
the present day, where it plays a central role in the development
of precision medicine. In precision medicine, treatments are
tailored based on a patient’s genetic information, lifestyle, and
environmental factors, marking a significant shift from the
traditional one-size-fits-all approach to healthcare. The
upcoming sections of this paper will explore various machine
learning techniques currently used in the United States
healthcare system. Topics will include disease prediction and
detection, medical imaging, biomedicine applications,
biomedical event extraction, polypharmacology, and drug
repurposing using systems biology. These discussions will
highlight how different machine learning models contribute to
clinical efficiency and the delivery of patient-centered care.

The discussion section will present a comparison of various
machine learning algorithms based on their performance in
healthcare applications. Factors such as prediction accuracy,
processing time, and scalability will be evaluated. Special
attention will be given to methods used for improving model
performance and the ability of these models to scale across
large healthcare systems. Scalable machine learning algorithms
are particularly important for widespread implementation in
hospitals, clinics, and research institutions across the United
States.

The concluding section will summarize the findings and
emphasize the growing dependence of modern healthcare on
machine learning technologies. As the demand for more
accurate, efficient, and personalized care continues to rise,
machine learning will remain an essential part of healthcare
innovation. From early diagnosis and individualized treatment
to public health planning and crisis management, machine
learning is shaping the future of healthcare by delivering data-
driven solutions that improve outcomes and optimize resources.

2. Machine Learning Approach

Machine learning is a scientific field that focuses on enabling
computers to learn from data and continuously enhance their
performance over time. It is rooted in probability and statistics
but often proves more powerful than traditional statistical
methods, particularly in decision-making. The inputs provided
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to machine learning algorithms, known as features, play a
critical role in determining the accuracy of predictions. The
effectiveness of a model is highly dependent on the quality of
these features. Therefore, one of the primary responsibilities of
a machine learning developer is to identify a subset of features
that best support the algorithm’s purpose, which can
significantly improve accuracy (Calamuneri et al., 2017). This
task is complex and typically requires ongoing experimentation
to refine the selection of relevant features.

Applying machine learning involves three essential stages:
training, testing, and validation. The training phase is crucial
because the quality of the training data directly influences
model performance. During testing, the algorithm’s
effectiveness is assessed, with attention given to minimizing
bias and maximizing variance to ensure generalizability. An
optimal model balances this bias-variance trade-off effectively.
Finally, the model is evaluated using a validation dataset to
verify its real-world applicability. Understanding different
machine learning approaches and key algorithms commonly
used for classification and clustering is essential for anyone
entering the field.

2.1 Supervised Learning

Supervised learning involves using a labeled dataset where the
input data is associated with known outcomes. This approach

is primarily divided into two tasks: classification and regression.

Classification methods assign input data to specific categories,

while regression deals with predicting continuous output values.

The performance of classification models is often evaluated
using accuracy metrics, whereas regression models are
typically assessed using root mean square error (Deo, 2015).

Supervised learning aims to build predictive models based on

historical data, enabling the system to forecast known outcomes.

These tasks are often ones that a trained human expert can
perform, but supervised models can process much larger
datasets and identify hidden relationships more efficiently
(Bharat et al., 2018). In healthcare and biomedical applications,
supervised learning is frequently used for risk estimation and
to uncover associations not immediately evident to clinicians
(Gu & others, 2023).

2.1.1 K-Nearest Neighbor (KNN)

KNN is a widely used supervised classification algorithm
applied in various domains including pattern recognition and
anomaly detection [13]. Its straightforward implementation and
strong performance make it popular, though it can be
computationally expensive. Both training and test data must be
stored, leading to high memory usage. To classify a new data
point, the algorithm identifies the most similar instances in the
dataset using a distance metric—commonly the Euclidean
distance—and assigns a label based on the majority class
(mode) or average (mean) among the nearest neighbors.

2.1.2 Support Vector Machine (SVM)

SVM is a powerful supervised learning algorithm primarily
used for classification but also capable of handling regression
tasks. In SVM, data points are plotted in an n-dimensional
space, and the algorithm identifies the optimal hyperplane that
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separates the classes with the maximum margin (Chauhan et al.,
2019; Jabin et al., 2024). One of the strengths of SVM is its
ability to map input features into higher dimensions using
kernel functions, which enables it to solve non-linear
classification problems. While SVM generally delivers high
accuracy, it is more effective with smaller datasets.
Performance may degrade in the presence of noisy data or large
datasets due to increased computational complexity.

2.1.3 Decision Trees (DT5)

Decision trees operate using a tree-like structure in which each
internal node represents a decision based on an attribute, each
branch represents the outcome of that decision, and each leaf
node corresponds to a class label (Mishra et al., 2019). This
model is intuitive and easy to interpret, making it suitable for
simple problems and small datasets. However, decision trees
are prone to overfitting and can produce biased results when
dealing with imbalanced data. Despite these limitations, they
are effective for modeling both linear and non-linear
relationships.

2.1.4 Classification and Regression Trees (CARTs)

CART is a predictive modeling technique that uses a binary tree
structure to make decisions. Each node in the tree represents an
input feature and a threshold that splits the data, while the
leaves contain the predicted outcomes (Charbuty & Abdulazeez,
2021). CART models are versatile and can be used for both
classification and regression tasks. They work by recursively
dividing the dataset based on feature values that maximize
information gain or minimize error.

2.1.5 Logistic Regression (LR)

Logistic regression is a statistical modeling technique widely
used in machine learning, especially in epidemiology and
binary classification problems (Nusinovici & others, 2020). It
uses a logistic function to model the probability of a binary
outcome. The model consists of two main components: a linear
component that calculates the weighted sum of inputs, and a
link function that maps this sum to a probability value. The goal
is to find the optimal coefficients by minimizing a cost function,
which measures the difference between predicted and actual
outcomes.

2.1.6 Random Forest Algorithm (RFA)

Random Forest is a popular ensemble learning method that can
handle both classification and regression tasks (Ao etal., 2019).
It builds multiple decision trees during training and uses a
voting or averaging mechanism to make final predictions. This
algorithm employs the bagging technique to reduce variance
and improve accuracy. Random Forest is known for its
robustness against overfitting, ability to handle noisy data, and
effectiveness with imbalanced datasets. It is widely used in
bioinformatics and healthcare analytics for its reliability and
accuracy.

2.1.7 Naive Bayes (NB)

Naive Bayes is a probabilistic classifier based on Bayes’
theorem, commonly wused for binary and multiclass
classification (Farid et al., 2014). Despite its simplicity, it
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performs well in many real-world situations, particularly when
the assumption of feature independence is valid. In this method,
the probability of each class is computed given the input
features, and the input is assigned to the class with the highest
probability. Naive Bayes is computationally efficient and well-
suited for high-dimensional datasets such as text classification
and genetic data analysis.

2.1.8 Artificial Neural Network (ANN)

Artificial Neural Networks are inspired by the structure of
biological neurons and are particularly effective in complex
pattern recognition tasks such as image classification (Toraman
et al., 2020). ANNs consist of three types of layers: input,
hidden, and output. Each neuron in a layer is connected to every
neuron in the next layer. The learning process involves
adjusting weights through iterative training to minimize the
error between predicted and actual outcomes. Key components
include the error function, which evaluates model performance,
the search function, which explores possible improvements,
and the update function, which adjusts the network accordingly.
Increasing the number of hidden layers results in deeper
networks, which can model more complex relationships.

2.2 Unsupervised Learning

Unsupervised learning is applied in situations where the data
involved cannot be clearly labeled due to a lack of prior
knowledge about the system. In such cases, machine learning
algorithms autonomously identify similarities and differences
among data points. This learning method does not rely on
labeled datasets for training. Instead, it discovers existing
patterns in the data and groups similar items accordingly. The
central aim of unsupervised learning is to reveal natural
patterns or groupings in the data without predefined
classifications (Tyagi et al., 2022).

A major application of unsupervised learning is in precision
medicine, where patients may be grouped based on genetic
traits, environmental factors, or medical history. Through this
process, patterns and relationships that were previously
unnoticed can be revealed. Common algorithms used in
unsupervised learning include k-means, mean shift, affinity
propagation, DBSCAN (density-based spatial clustering of
applications with noise), Gaussian mixture models, Markov
random fields, ISODATA (iterative self-organizing data
analysis technique), and fuzzy C-means.

Clustering is a key method in unsupervised learning (Azimpour
et al., 2020). It involves dividing data into groups, or clusters,
based on shared features, though the cluster memberships are
not known beforehand (Tejasree & Agilandeeswari, 2024).
Clustering techniques can be classified into different categories
based on their methodology: partitioning, hierarchical, grid-
based, density-based, and model-based. They can also process
various data types, including numerical, discrete, and mixed
types. An ideal clustering algorithm should offer fast
processing, robustness to noise and outliers, low sensitivity to
input order, and the ability to work with diverse data structures.

In biomedical applications, clustering algorithms are especially
valuable due to the vast size and complexity of biological
datasets (Houssein et al., 2023). These algorithms help in

JAMSAL 1(2), pp.1-XY.

automatically analyzing large datasets, saving time and
improving efficiency. A reliable clustering method should
satisfy several criteria: scalability with large datasets,
robustness against outliers, consistency regardless of data order,
minimal user-specified parameters, ability to handle mixed data
types, detection of irregularly shaped clusters, and stability in
the presence of duplicate entries. In healthcare, these
algorithms can simultaneously analyze various types of data,
allowing the system to detect multiple health conditions in a
patient during the diagnosis process, thus streamlining
decision-making and enhancing patient outcomes.

2.2.1 Partition Clustering

Partition clustering divides data objects into multiple groups
based on dissimilarities. This technique is particularly useful
when the number of desired clusters is known in advance, such
as in small gene expression datasets. However, a limitation is
the need for users to specify the number of clusters manually.
Despite this, partition-based methods are frequently applied in
bioinformatics. Notable algorithms in this category include
fuzzy k-means, COOLCAT, CLARA (clustering large
applications), and CLARANS (clustering large applications
based on randomized search) (Kocheturov et al., 2019).

2.2.2 Graph-Based Clustering

Graph-based clustering methods are commonly used in
analyzing biological networks or interactomes. These
techniques help predict complex relationships and sequence
networks by treating data points as nodes in a graph. While
powerful, these algorithms can be slow and sensitive to
parameter settings defined by the user. Examples include super-
paramagnetic clustering (SPC), the Markov cluster algorithm
(MCL), molecular complex detection (MCODE), and restricted
neighborhood search clustering (RNSC) (Z. Zhang et al., 2018).

2.2.3 Hierarchical Clustering

Hierarchical clustering organizes data into a tree structure of
nodes, where each node represents a cluster. Parent nodes can
have multiple child nodes, and each data point can be traced
through this tree. This method is widely used in bioinformatics
due to its flexibility in analyzing data at various levels of detail
(Nielsen, 2016). However, it has drawbacks such as a slower
processing speed and irreversible errors when incorrect merges
occur. These limitations can result in the loss of significant
local patterns. Applications of hierarchical clustering include
protein sequence family classification and gene similarity
mapping. Prominent examples are Chameleon, ROCK (robust
clustering using links), LIMBO (scalable information
bottleneck), and spectral clustering.

2.2.4 Density-Based Clustering

Density-based clustering identifies groups in the data by
locating dense regions separated by areas of lower density. It is
particularly useful in bioinformatics for identifying tightly
connected subspaces within interactome networks. This
approach excels at detecting clusters of arbitrary shapes and
offers time efficiency. While some density-based algorithms
require user-defined parameters, they do not necessitate a
predefined number of clusters. Common algorithms in this
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category include OPTICS (ordering points to identify the
clustering structure), CLIQUE (clustering in quest),
DENCLUE (density-based clustering), and CACTUS
(clustering categorical data using summaries) (Bhattacharjee &
Mitra, 2020).

2.2.5 Model-Based Clustering

Model-based clustering assumes that the data follows a certain
statistical model. The structure of this model, which can be
specified and modified by the user, determines how the
algorithm identifies clusters (Bouveyron & Brunet-Saumard,
2014). This technique is wused in bioinformatics for
incorporating existing knowledge into the analysis of gene
expression, sequence data, and interactomes. Although
effective, it can be computationally intensive when applied to
large datasets. Moreover, inaccurate assumptions about the
model may lead to misleading results. Representative
algorithms in this category include SVM-based clustering,
COBWERB, and AutoClass.

2.3 Semi-supervised Learning

Semi-supervised learning operates using a combination of
labeled and unlabeled data. In this approach, only a portion of
the training dataset contains known outcomes, while the
remaining data lacks explicit labels. This technique is
particularly useful when it is impractical to label an entire
dataset but possible to make reliable predictions using partially
labeled data. Semi-supervised learning combines the strengths
of both supervised and unsupervised learning, making it a
powerful tool for scenarios where data labeling is costly or
time-consuming. It has become increasingly relevant in fields
like healthcare, where vast amounts of data are often available,
but not all of it is annotated.

2.4 Evolutionary Learning

Evolutionary learning draws inspiration from natural selection
and is widely used in the biological sciences. This approach is
employed to understand the behavior and survival patterns of
biological organisms. It helps in predicting outcomes such as
adaptability and fitness levels. By simulating evolutionary
processes, the algorithm iteratively improves its predictions,
making it suitable for problems where the objective is to find
optimal solutions under changing conditions.

2.5 Active Learning

Active learning is a strategy where the model is trained with a
limited number of labeled instances and selectively queries an
external source—such as a human expert or a database—to
label the most informative data points. This approach enables
the algorithm to improve efficiently by focusing on uncertain
or ambiguous samples. It is especially advantageous in
situations with limited resources or labeling budgets. The
dynamic interaction between the model and the information
source allows it to refine its understanding and improve
accuracy with minimal labeled data. Active learning is
considered a modern, cost-effective machine learning method
that supports intelligent decision making.
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2.6 Deep Learning

Deep learning represents an advanced stage of machine
learning and is centered around neural networks with multiple
layers. These deep neural networks are capable of learning
complex patterns and relationships in large and varied datasets.
Deep learning models are highly effective in tasks such as
image recognition, natural language processing, and
biomedical data interpretation (X. Wang et al., 2020).They can
generalize across different types of problems and provide
accurate predictions, even when dealing with high-dimensional
or unstructured data. This flexibility makes deep learning
particularly valuable in healthcare and biomedical research,
where data complexity is often a significant challenge.

2.7 Reinforcement Learning

Reinforcement learning is a unique machine learning paradigm
where the model learns through trial and error in an interactive
environment. The algorithm receives feedback in the form of
rewards or penalties based on its actions and uses this feedback
to improve future performance. This iterative learning process
allows the system to autonomously adapt to dynamic
conditions. Reinforcement learning has applications in areas
such as robotics, personalized medicine, and adaptive treatment
strategies, where continuous learning from interactions is
essential.

After outlining these various machine learning approaches, it is
helpful to explore how they are practically applied in the field
of biomedicine. For instance, in neuroscience, machine
learning classifiers are utilized to examine both the functional
and structural aspects of the brain. In oncology, algorithms are
used for cancer detection and prognosis, with support vector
machines (SVMs) playing a role in diagnosing prostate cancer.
Hierarchical clustering methods have been employed to study
Alzheimer’s disease, while artificial neural networks (ANN)
have been applied to classify subtypes of psychogenic
nonepileptic seizures (Vasta & others, 2018). These examples
illustrate the significant impact machine learning has on
advancing biomedical research and clinical applications. With
an understanding of the various machine learning techniques
and their corresponding algorithms, the next step is to delve
deeper into their practical uses in computational biology and
medicine.

3. Machine Learning in Disease Prediction and
Detection

Machine learning techniques have been widely adopted in the
early detection and diagnosis of various diseases, as early
intervention often results in simpler treatment protocols and
significantly improves patient outcomes. However, the
effectiveness of these algorithms varies based on multiple
factors including the type of algorithm used, the quality of input
features, and the training dataset. This section highlights
specific diseases where machine learning has been successfully
applied, emphasizing the importance of early diagnosis, the
techniques utilized, and the feature sets involved. A detailed
comparative analysis of these approaches is provided later in
the discussion section.
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3.1 Cancer

Cancer typically begins with abnormal cell behavior where
signals controlling cell growth and division become faulty,
leading to uncontrolled multiplication and tumor formation.
Among non-invasive techniques, thermography has emerged as
a promising diagnostic tool due to its safety and effectiveness.
From thermal images, machine learning algorithms, supported
by feature extraction techniques such as SIFT and SURF, can
detect potential cancerous growths. These features can be
refined using Principal Component Analysis (PCA) to improve
interpretability and accuracy.

3.1.1 Breast Cancer

Breast cancer is one of the most prevalent cancers among
women and remains a leading cause of mortality. Early
diagnosis through MRI, mammography, ultrasound, or biopsy
significantly increases the chances of successful treatment.
However, distinguishing between benign and malignant tumors
can be challenging, which is where machine learning proves
invaluable. These systems can autonomously improve over
time, enhancing diagnostic accuracy.

The process typically involves three stages: preprocessing,
feature extraction, and classification. Features such as image
smoothness, coarseness, depth, and regularity are extracted
using segmentation. While converting images to binary helps
isolate information, some critical features are lost, prompting
the use of grayscale formats instead. Discrete Wavelet
Transformation (DWT) is employed to transform images into
frequency domains, generating approximation and detail
coefficient matrices used for classification by machine learning
algorithms.

3.1.2 Lung Cancer

Lung cancer originates in the respiratory system and can spread
to other organs if undetected. Risk factors include tobacco use,
air pollution, and underlying respiratory conditions. Early
symptoms are often absent, making early diagnosis difficult
and increasing the danger.

Computed Tomography (CT) imaging provides clearer images
than MRI or X-rays and is commonly used in diagnostics.
Image preprocessing includes grayscale conversion, noise
reduction using median filters, and segmentation to isolate
relevant areas. Key features like area, perimeter, and
eccentricity are then extracted.

Detecting Small-Cell Lung Cancer (SCLC) is particularly
difficult due to its visual similarity to healthy tissues. Deep
learning methods, particularly Convolutional Neural Networks
(CNN), offer a solution but require large training datasets. The
Entropy Degradation Method (EDM) addresses this issue by
converting histograms into scores and using logistic functions
for classification. Although the accuracy of this approach is
promising, it can be further enhanced with larger datasets and
deeper network structures.

3.1.3 Acute Lymphoblastic Leukemia (ALL)

ALL is a rapidly progressing blood cancer characterized by the
accumulation of immature lymphocytes, which hinders the
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production of healthy blood cells. It can be fatal within weeks
if untreated. Symptoms include fatigue, pale skin, fever, joint
pain, and swollen lymph nodes.

Several machine learning models have been used for detection,
including KNN, SVM, Naive Bayes, RBFN, and MLP. The
workflow usually involves preprocessing, feature extraction,
model training, and performance evaluation. Cropping
highlights, the region of interest, and Gaussian blur is used to
enhance image quality. Features used for classification include
color, geometry, texture, image moments, and local binary
patterns.

3.2 Diabetes

Diabetes is a chronic condition caused by elevated blood
glucose levels and can significantly affect quality of life if not
diagnosed early. It is categorized into Type 1, Type 2, and
gestational diabetes.

Discriminant Analysis (DA) is often used to classify diabetes
by deriving equations based on input features such as blood
pressure, glucose levels, insulin ratio, skinfold thickness, age,
and more. Machine learning models like GNB, Logistic
Regression, KNN, CART, RFA, and SVM have shown
potential in predicting Type 2 diabetes using data from
electronic medical records (EMRs).

Neural networks, particularly feed-forward models trained via
backpropagation, have demonstrated higher accuracy. Key
input features include number of pregnancies, insulin levels,
BMI, and plasma glucose levels. Deep neural networks (DNNs),
trained with five-fold and ten-fold cross-validation, have
achieved up to 97% accuracy in diabetes prediction.

3.3 Heart Diseases

Heart diseases are critical health conditions often caused by
blocked coronary arteries. Risk factors include high blood
pressure, smoking, lack of exercise, and age. Symptoms may
include fatigue, breathlessness, and swollen extremities.

Precision medicine in cardiology addresses diagnostics and
therapeutic planning. It supports personalized interventions
based on individual characteristics, including genomics and
gender-specific differences. Technologies such as patient
monitoring and clinical decision support systems (CDSSs)
benefit from machine learning integration.

Blood and genetic tests are essential in identifying heart disease,
especially ischemic conditions. Precision cardiology focuses
on areas such as cardiac genetics and cardiac oncology.
Machine learning methods like CNN, RNN, NLP, SVM, and
LSTM are used to enhance CDSS capabilities.

Heart disease prediction involves preprocessing data, selecting
features, validating models, and evaluating classifier
performance. Preprocessing techniques include handling
missing data and normalizing input. Feature selection using
Relief, mRMR, and LASSO improves model efficiency and
accuracy (Silva & Ramos, 2025).
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3.4 Chronic Kidney Disease (CKD)

CKD gradually impairs kidney function, potentially leading to
failure. Although diagnosis typically involves lab tests,
imaging, and biopsy, these methods can be invasive and costly.
Machine learning offers a non-invasive alternative (Liu et al.,
2020).

While SVM is widely used in many medical applications,
research on its use in CKD is limited. Instead, ANN, Decision
Trees, and Logistic Regression are commonly applied. Among
these, ANN has shown superior diagnostic performance for
CKD detection.

3.5 Parkinson’s Disease (PD)

PD is a neurodegenerative disorder that affects movement and
coordination due to reduced dopamine production. Symptoms
include tremors, stiffness, and postural instability. There is no
known cure, and treatment options are limited.

Machine learning has been applied to video analysis and voice
recordings to distinguish between PD patients and healthy
individuals (Saikia et al., 2020). Feature selection methods like
PCA and Genetic Algorithms (GA) are used. GA, inspired by
natural selection, evaluates potential solutions through
mutation and crossover processes to find optimal features. PCA
helps reduce dimensionality and extract meaningful patterns
from complex datasets.

3.6 Dermatological Diseases

Dermatological conditions are diverse and often difficult to
diagnose due to limited expertise. Early detection is crucial for
conditions like eczema, herpes, melanoma, and psoriasis.

A common approach involves three phases: data collection and
augmentation, model training, and image analysis (Giger,
2018). Data augmentation techniques include SMOTE and
various image preprocessing methods like greyscaling,
sharpening, noise reduction, and contrast adjustment. A well-
trained CNN model can address overfitting and improve
prediction.

In the final stage, features from the last CNN layer are passed
to an SVM classifier. For this to work, the SVM must first be
trained using these CNN-generated features, which it converts
into vectors for classification.

4. Machine Learning in Medical Imaging

Medical imaging has emerged as one of the fastest-growing
domains in biomedical research due to its pivotal role in
diagnosing a wide range of diseases. The integration of
machine learning with medical imaging has further accelerated
advancements in this field by enabling the automated extraction
and classification of critical features from images. The typical
workflow involves segmenting the input image to focus on
regions of interest, applying feature extraction techniques to
highlight relevant patterns, eliminating noise, and finally
classifying the features to make diagnostic predictions.

In today’s medical landscape, accurately analyzing large
volumes of imaging data is crucial for disease diagnosis and
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treatment planning. Machine learning has been extensively
applied across various biomedical tasks, including classifying
patient data based on attributes, examining medical records,
detecting diseases, generating treatment recommendations, and
enhancing diagnostic accuracy through image analysis
(Vayadande et al., 2024).

Medical imaging has also significantly improved surgical
planning, helping physicians tailor procedures to individual
patient conditions. For example, the complexity of skull-base
surgery has traditionally posed significant challenges due to
anatomical variability. However, the adoption of endonasal
endoscopic techniques allows surgeons to visualize the skull
base and associated neurovascular structures through the nasal
cavity, minimizing brain displacement and offering enhanced
visibility with multi-angled, close-up views.

Magnetic resonance imaging (MRI) is particularly effective in
planning treatments for conditions such as rectal cancer, as it
provides detailed visualization of tumor extent and essential
prognostic data. This information guides the development of
personalized therapeutic strategies for each patient. Image-
guided surgeries, in comparison to conventional methods, offer
benefits such as reduced invasiveness, more precise targeting,
and improved outcomes. These surgeries rely heavily on
imaging for pre-operative planning, intra-operative navigation,
and post-operative assessment. In neurosurgery, where
precision is paramount, medical imaging ensures accurate
localization of targets and supports instrument guidance to
minimize damage to surrounding tissues. Modalities such as
MRI, CT, ultrasound, PET, SPECT, and fluoroscopy are
routinely used to support procedures like biopsies, tumor
resections, epilepsy surgery, and vascular interventions
(Folorunso et al., 2020). Advances in 3D imaging have also
facilitated virtual modeling of anatomical structures, enhancing
both understanding and execution of surgical procedures.
Technologies such as 3D ultrasound and fetal MRI are
increasingly being adopted in clinical practice.

Machine learning plays a transformative role in medical
imaging by uncovering subtle patterns not easily perceived by
human observers. Unsupervised learning techniques like
clustering allow for analysis of large imaging datasets to
support surgical decisions. These algorithms can help identify
missed anomalies or validate the appropriateness of chosen
surgical approaches.

Due to the complexity of anatomical structures, standard
mathematical modeling often falls short in medical image
interpretation. Machine learning overcomes this by applying
pixel-level analysis, which does not require conventional
feature extraction or segmentation. This enables effective
information retrieval even from low-contrast images, although
the approach requires extended training time due to high data
dimensionality. Techniques such as histogram equalization
(HE) are frequently used to enhance contrast, and its variants
have further improved algorithmic performance.

Common machine learning methods applied in image analysis
include linear discriminant analysis (LDA), support vector
machines (SVM), and decision trees (DT). Additionally,
texture-based descriptors like local binary patterns and the
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application of neural networks provide powerful tools for
interpreting biological images. These techniques are also
embedded in medical expert systems to support clinical
decision-making.

Convolutional Neural Networks (CNNs) are particularly
effective for image-based tasks. With multiple convolutional
layers, CNNs can transform input images into meaningful
features. Image classification involves identifying overall
patterns associated with diseases, while object classification
focuses on smaller, specific regions within medical images.
Deep learning techniques such as CNNs enable disease pattern
recognition, categorization, and quantification at an advanced
level.

One of the key advantages of computers is their ability to
perform complex tasks consistently and efficiently. In recent
years, machine learning has demonstrated a remarkable
capacity to tackle problems once deemed too intricate for
automation. These systems can even detect patterns beyond
human perception.

In the context of medical imaging, a few core terms are
essential to understand. "Classification" refers to labeling
pixels or regions with specific categories. A "model" comprises
the decision-making rules learned during training, while an
"algorithm" outlines the steps used to create the model.
"Labeled data" provide examples for learning specific classes.
The "training set" is used to teach the algorithm, while a
"validation set" helps evaluate its performance. In neural
networks, a "node" is a unit combining inputs with an activation
function, and a "layer" consists of multiple interconnected

nodes. "Segmentation" divides an image into regions of interest.

"Overfitting" occurs when a model is overly tailored to the
training data and fails to generalize. "Features" are numerical
values that represent characteristics of an image, such as pixel
intensity, edge strength, or regional variance. Effective feature
selection is essential for building accurate models.

Image recognition and time-series classification in biomedical
applications often involve nonlinear classification challenges.
Traditional algorithms and feature extraction methods struggle
with highly nonlinear data. Deep neural networks (DNNs),
however, overcome this by adding multiple layers and neurons,
allowing for complex function approximation. Ensemble
learning is another powerful approach in which multiple
classifiers are combined to form a more robust decision model.
In both SVM and ensemble learning, nonlinear functions are
formed using combinations of kernel methods. Ensemble
strategies typically fall into four categories: modifying training
samples (e.g., bagging, boosting, cross-validation), altering
input features (e.g., random subspace, feature decimation),
adjusting class labels (e.g., output coding, label switching), and
introducing randomness into learning algorithms (e.g.,
backpropagation with randomized weights). The goal is to
create diverse classifiers that, when combined, deliver superior
overall performance.

Machine learning continues to revolutionize medical imaging,
enabling more accurate diagnoses, efficient surgical planning,
and data-driven treatment strategies that were once only
possible through human expertise.
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5. Machine Learning in Biomedicine

Gene expression datasets play a vital role in biomedical
research as they capture dynamic changes in gene activity over
time. These datasets typically consist of numerical matrices,
representing the increasing or decreasing expression levels of
specific genes across various time points or tissue samples.
Similarly, in protein-protein interaction (PPI) networks, nodes
denote biomolecules and edges signify interactions between
them. When applying clustering algorithms in such domains,
minimizing user-defined parameters is critical, as inaccurate
input values can reduce the effectiveness and accuracy of the
model.

Machine learning has become an essential component of
modern biomedical science, offering powerful tools to address
complex challenges. In biomedicine, its applications are
diverse, ranging from predicting protein structure and function
based on genetic sequences to identifying optimal dietary plans
tailored to an individual’s clinical profile and microbiome.
Moreover, machine learning is instrumental in analyzing real-
time, high-resolution physiological data used in various
medical applications. There are three primary areas where
machine learning significantly contributes to biomedicine. First,
it enhances prognostic models. Traditional prognosis tools
often rely on a limited number of manually entered variables,
whereas machine learning models can extract and analyze
thousands of features directly from electronic health records
(EHRs), improving predictive accuracy. Second, it streamlines
the workload of radiologists and pathologists by automating
image analysis. Machine learning algorithms can interpret
medical images with remarkable precision—often surpassing
human capabilities—while operating continuously without
fatigue. Third, it improves diagnostic accuracy by reducing
human error. However, a significant challenge in this area is
that the output is not always binary, which complicates
algorithm training and requires complex, structured data
preprocessing to handle the often-unstructured format of EHRs.

While raw data alone holds little value, machine learning
algorithms can interpret, analyze, and extract actionable
insights from it. This capability has made machine learning
tools indispensable in clinical practice. Many traditional
computer-based systems in medicine are expert systems that
apply a predefined set of rules to clinical scenarios, resembling
the approach used by medical students learning through general
principles. In contrast, machine learning does not rely on hand-
crafted rules. Instead, it learns patterns and associations directly
from patient-level data, processing vast numbers of variables to
find predictive combinations. A key strength of machine
learning lies in its ability to manage thousands of predictors—
sometimes even more than the number of observations—and
synthesize them in nonlinear, interactive ways to make accurate
predictions. For reliable evaluation, machine learning models
must be tested on truly independent validation datasets drawn
from different populations and timeframes, ensuring no overlap
with the training data. Failure to use independent datasets may
lead to overfitting and poor generalization. High-quality, high-
volume datasets are essential for optimal algorithm
performance. However, biased datasets can compromise both
accuracy and applicability. It's important to note that machine
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learning cannot resolve fundamental challenges related to
causal inference in observational studies. While predictive
accuracy may be high, these models often reflect correlations
rather than causative relationships.

Many current studies in medical machine learning focus on
binary outcomes, such as whether a patient has a particular
disease. Some also assess disease staging, but most are disease-
specific and do not address multiple conditions simultaneously.
To overcome this limitation, a technique known as Ensemble
Label Power-set Pruned Dataset Joint Decomposition
(ELPPJD) has been proposed. ELPPJD improves on the Label
Power-set (LP) method, which accounts for label correlations
but suffers from increased time complexity and imbalanced
class distributions as label sets grow (Folorunso et al., 2020;
Yoganathan et al., 2023). ELPPJD addresses these issues by
dividing the training dataset into disjoint subsets and using
similarity thresholds to cluster similar labels. This approach
employs two main strategies for subset partitioning: Size
Balanced (SB) and Label Similarity (LS).

Alternative multilabel classification methods include Random
k-label sets (RAKEL) and Hierarchy of Multilabel Classifiers
(HOMER). RAKEL operates on the MEKA framework and
utilizes the C4.5 algorithm, while HOMER is based on the
MULAN platform and employs Random Forest (RF) classifiers
(Zhou & Zhong, 2015). Among the two, RAKEL generally
performs better. However, ELPPJD—particularly when using
the LS partitioning strategy—has demonstrated superior
performance compared to both RAKEL and HOMER, making
it a promising method for handling multilabel biomedical
classification tasks.

6. Machine Learning in Biomedical Event

Extraction

The relationships between diseases and drugs, diseases and
genes, drug-drug interactions, and protein-protein interactions
represent highly complex biological events. Accurately and
efficiently extracting such events from scientific literature is
essential for advancing biomedical research. Due to the
exponential growth of unstructured and semi-structured data in
biomedical publications, text mining techniques have become
increasingly important (Lee et al., 2016).

While pattern-based methods have traditionally been used for
extracting relationships in biomedical texts, they are not widely
applied in event extraction due to their limitations. Biomedical
event extraction systems are generally categorized into two
main types: rule-based systems and machine learning-based
systems. In the machine learning approach, event extraction is
typically formulated as a classification problem. However, one
of the primary challenges in this domain is dealing with highly
imbalanced datasets, which can skew model performance.
Support Vector Machines (SVMs) help address this issue
through class weighting strategies that balance the training
process (Tao & others, 2019). Machine learning-based event
extraction models are further divided into three architectures.
The first is the pipeline model, which has achieved promising
results but suffers from error propagation, as each step is
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dependent on the output of the previous one. The second is the
joint model, which resolves this issue by processing all tasks
simultaneously, although it demands significantly more
computational resources. The third is the pairwise model,
which combines features of both pipeline and joint models. It
offers improved speed compared to the joint model and higher
accuracy than the pipeline model, effectively managing multi-
class and multi-label classification without being hindered by
data imbalance.

A comprehensive machine learning system designed to extract
biomedical events from imbalanced datasets typically begins
with text preprocessing. This step involves analyzing token-
level, sentence-level, syntactic dependency, and external
resource features. Following preprocessing, a sample selection
phase identifies frequent sequential patterns within the text to
capture recurring biological events. These patterns are essential
for detecting multi-argument events. The final output is
generated through a joint scoring mechanism, where tools like
sentence2vec, based on convolutional deep structured semantic
models (C-DSSMs), compute semantic relevance scores to
enhance interpretation (Javaid et al., 2022).

SVMs are commonly used to divide biomedical event
extraction into multiple classification tasks. These tasks include
identifying trigger words that signal events and detecting the
associated entities—such as genes and proteins—that
participate in these events. While supervised learning models
perform well in these tasks, they often struggle with sparse or
limited training data, particularly when dealing with rare or
previously unseen features.

To address these limitations, researchers have turned to semi-
supervised and unsupervised learning methods. Large volumes
of unlabeled data, such as those found in repositories like
PubMed, offer valuable information that can supplement
labeled datasets. A strategy known as event feature coupling
generalization has been proposed to bridge the gap, allowing
features derived from labeled data to be enhanced by
incorporating insights from unlabeled data. This hybrid
approach improves performance and mitigates the issues
caused by sparse training features, enabling more robust event
extraction systems.

In addition to event extraction, understanding protein function
is another critical area in biomedical research. Proteins are the
end products of gene expression and play a central role in
biological systems. Despite the existence of extensive protein
sequence databases, many proteins remain functionally
uncharacterized due to the slow pace of experimental
annotation. This discrepancy highlights the need for
computational approaches capable of analyzing vast protein
datasets with minimal labeled data. Machine learning provides
an effective solution for this challenge. By analyzing protein
sequences, machine learning models can infer structural,
functional, and evolutionary characteristics.  Protein
classification aims to identify these traits with precision, and
the use of machine learning has become indispensable in
mining functional information from large-scale protein
databases. These algorithms have significantly accelerated the
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ability of researchers to classify proteins, thereby enhancing the
understanding of gene functions at the proteome level.

7. Machine Learning Approaches to Poly

pharmacology

Poly pharmacology is a growing field in biomedical research
that focuses on developing treatments capable of interacting
with multiple molecular targets rather than a single receptor.
Drug efficacy and toxicity are shaped by a range of complex
interactions involving pharmacodynamic and pharmacokinetic
properties, as well as genetic, epigenetic, and environmental
influences—even when the drug is designed to act on one or
several specific targets. To effectively analyze and predict drug
responses both in vitro and in vivo, advanced computational
tools, particularly those based on machine learning, are
essential (Kabir & Muth, 2022).

Accurately identifying drug-target interactions on a proteome-
wide scale is a fundamental step in understanding and
predicting drug responses. Beyond genetic and epigenetic
variations, the cellular environment—including intercellular
communication and variability between individual cells—must
be factored into predictive models. Systems biology
approaches provide a comprehensive framework for mapping
the interactions among these components, enabling more
informed drug discovery efforts.

New computational strategies are needed to model protein-
ligand binding events more precisely, particularly by
calculating free-energy landscapes associated with the
association and dissociation of molecular complexes (Q. Zhang
et al., 2022). These calculations support the investigation of
both high- and low-affinity binding events across the entire
proteome. Self-organizing maps, a form of unsupervised
machine learning, are commonly used to cluster drug
compounds. Combining the structural features of receptors
with chemical fingerprints of ligands allows the development
of machine learning models capable of predicting drug-target
interactions. Four computational areas are especially crucial for
advancing  polypharmacology: large-scale  drug-target
interaction prediction, quantitative modeling of protein-ligand
interactions, integrated analysis of biological networks, and the
dynamic simulation of network behavior, including
stoichiometry and kinetics.

Next-generation sequencing (NGS) encompasses both DNA
and RNA sequencing technologies. It works by breaking
genetic material into smaller fragments and determining the

order of nucleotide bases within each segment (M. Wang, 2021).

NGS can be categorized into whole-genome sequencing
(WGS), whole-exome sequencing (WES) of coding regions,
and targeted sequencing of specific genes linked to disease. In
clinical practice, WGS and WES are increasingly used for
diagnosing complex neurodevelopmental disorders such as
autism, epilepsy, and intellectual disabilities.

Several commercially available NGS platforms employ
different techniques to generate sequencing data, and ongoing
technological improvements have reduced error rates
considerably. Despite these advancements, Sanger sequencing
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remains the gold standard for validating genetic variants due to
its superior accuracy.

When machine learning techniques are applied to clinical data,
they enable the creation of prediction models that can assist in
various aspects of medical practice—from early warning
systems to advanced imaging diagnostics that rival expert
human performance. These models generate predictions based
on patterns in existing data. However, a well-known cautionary
example is the failure of Google Flu, which illustrated the
pitfalls of using limited historical data for time-series
forecasting.

Research in clinical decision support systems has shown that
relying solely on large volumes of historical data does not
necessarily improve prediction accuracy. In many cases, more
accurate results are obtained by focusing on the most recent
year of data rather than attempting to model long-term trends.
The primary goal in evaluating prediction models is not to
replicate past outcomes, but to forecast future events with
precision.

While machine learning can outperform traditional regression
techniques by uncovering nonlinear and complex relationships
in the data, there are fundamental limitations. Even the most
powerful algorithms cannot extract information that is not
present in the dataset. Consequently, the predictive power of
these models is restricted when they rely solely on clinical data.
Integrating additional, relevant data streams can improve
prediction performance, but there are inherent constraints.
Small discrepancies or rounding errors—often considered
negligible—can accumulate over time and significantly distort
long-term predictions. This highlights the unpredictability of
complex systems and the challenges associated with
forecasting in medicine, even with advanced computational
tools.

8. Machine Learning for Drug Repurposing
Using System Biology

More than 90% of drugs that enter the early phases of clinical
trials ultimately fail, primarily due to adverse reactions,
undesirable side effects, or insufficient efficacy (Jain et al.,
2023). To address these challenges, drug repurposing has
emerged as a promising alternative. Drug repurposing
strategies can be categorized as either drug-centric or disease-
centric. A drug that exhibits a strong negative correlation with
a disease—meaning it counteracts the disease's gene expression
profile—is often considered a viable candidate for repurposing.

One of the earliest efforts in this area was the Connectivity Map
project, which aimed to establish functional links between
drugs and between drugs and diseases. Systems biology plays
a vital role in this context by analyzing how drugs influence
complex biological systems, including gene interactions and
cellular pathways (Zivanovi¢ & Filipovié, 2024). In these
models, drugs are ranked based on the extent to which they
perturb disease-associated genes.

A commonly used framework in drug repurposing is the Drug-
Disease Network (DDN), which integrates information about
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disease-related genes, drug targets, signaling pathways, and
gene-gene interactions (Conte & others, 2020). The DDN maps
out all known interactions relevant to a particular disease as
defined by sources like the Kyoto Encyclopedia of Genes and
Genomes (KEGG). To determine whether a drug could be
repurposed for a specific disease, a repurposing score is
calculated using the Pearson correlation coefficient between the
gene perturbation signatures of the drug and the disease. This
coefficient ranges from -1 to 1. A high positive score indicates
similar biological effects, while a high negative score suggests
the drug may effectively counteract the disease, making it a
strong candidate for treatment.

This framework illustrates how machine learning supports
decision making throughout the continuum of patient care.
From the moment a patient is diagnosed, each step—whether it
involves identifying the disease, uncovering comorbid
conditions, or selecting appropriate treatments—is guided by
machine learning models that help clinicians make timely and
accurate decisions. These tools assist in disease prediction,
diagnosis, clinical decision support, and evaluating drug
efficacy and compatibility.

Even after a patient recovers, machine learning continues to
play a role in preventive healthcare. By analyzing electronic
health records (EHRs), machine learning algorithms can
identify potential future health risks, allowing for early
intervention. In this way, machine learning not only enhances
diagnosis and treatment but also contributes to long-term
patient monitoring and preventive care strategies.

9. Discussion

This review has explored the evolving role of machine learning
in healthcare, focusing on its applications in disease detection,
medical imaging, drug repurposing, and precision medicine.
Among the core observations, the performance of a machine
learning algorithm is primarily judged by its classification
accuracy and log loss—higher accuracy and lower log loss
indicate a more effective model. However, algorithm
performance also depends heavily on the dataset, feature
selection, preprocessing, and hardware capabilities, making
algorithm selection an iterative and context-specific process.

In clustering tasks, especially when dealing with biomedical
data that is often high-dimensional and nonspherical, user-
defined parameters like the number of clusters or starting points
can significantly impact outcomes. Automatic Density
Clustering with Multiple Kernels (ADCMK) addresses this by
automatically determining kernel weights, cutoff distances, and
centroids, leading to more consistent clustering results. This
method is particularly beneficial for unsupervised learning
where label data is unavailable.

Algorithm effectiveness varies across medical domains. For
example, artificial neural networks (ANNs) have shown
superior performance in diagnosing kidney disease, while
support vector machines (SVMs) perform well in lung cancer
detection and staging. In breast cancer prediction, deep neural
networks (DNNs) have outperformed ANNs, SVMs, and k-
nearest neighbors (KNN). Meanwhile, logistic regression is
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less suitable for complex disease modeling due to its simplicity,
and KNN struggles with large-scale cancer datasets.

Convolutional Neural Networks (CNNs) are highly effective in
extracting features from both structured and unstructured
medical data. CNN-based unimodal and multimodal disease
risk prediction models (CNN-UDRP and CNN-MDRP) further
enhance prediction accuracy by representing test results using
word embeddings from natural language processing (NLP) .
Medical imaging is another area where machine learning has
significantly improved diagnostic processes. CNNs with
adaptive sliding window fusion provide robust, high-accuracy
classification, especially for tumor detection. Deep learning
combines unsupervised pretraining with supervised fine-tuning,
enabling better learning from data with minimal labels. For
biomedical time series, where traditional CNNs may fall short,
multi-channel CNNs offer improved performance. The
integration of 3D printing with medical imaging has
revolutionized surgical planning and prosthetic design. By
converting medical image data into physical models, clinicians
can perform complex surgeries with higher precision.
Advanced devices such as bionic eyes, antibacterial teeth, and
hyperelastic bones have been successfully developed using 3D
printing. These innovations, summarized in Table 1, highlight
how machine learning and biomedical data analytics are
contributing to personalized medicine and bio-prosthetic
advancements. To effectively analyze high-dimensional
biomedical data, techniques such as t-distributed stochastic
neighbor embedding (t-SNE) and ADCMK have shown
promising results in visualizing and clustering unlabeled data.
In protein classification and biomedical event extraction,
limited and imbalanced data present significant challenges.
Semi-supervised learning techniques like the transductive
SVM (TSVM) and expectation-maximization models have
been introduced to enhance performance by leveraging
unlabelled datasets.

In polypharmacology, the integration of machine learning must
be approached cautiously. Even identical genetic and
environmental conditions can lead to unpredictable outcomes,
highlighting the limitations of purely data-driven models.
Although machine learning excels at prediction, it often lacks
interpretability and does not inherently provide causal
explanations. Nevertheless, it supports clinicians in resource
allocation and decision-making by highlighting trends and risk
factors more efficiently than manual review.

Improving the efficiency and accuracy of machine learning
models involves multiple strategies. Principal Component
Analysis (PCA) and Genetic Algorithms (GA) have proven
effective for feature selection, improving metrics such as
positive predictive value, negative predictive value, sensitivity,
and specificity. Ensemble learning methods—such as bagging,
boosting, and majority voting—combine multiple weak
classifiers into a strong classifier, enhancing performance
through collaborative decision-making. Feature selection is
essential for reducing model complexity and preventing
overfitting. Methods like forward feature selection, backward
elimination, and recursive feature elimination fall into filter,
wrapper, and embedded categories, respectively. Selecting non-
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redundant features improves both computational efficiency and
model accuracy.

Deep learning, particularly DNNs with more than 20 layers, is
now used in tasks ranging from image recognition to genotypic
and phenotypic classification. CNNs amplify important image
features through convolution and pooling layers, eliminating
the need for manual feature extraction. Activation functions
like ReLU, sigmoid, and softmax play key roles in forming
nonlinear layers that improve learning in deep architectures.
Table 2 lists various open-source libraries across languages that
support machine learning development, with Python being the
most widely adopted . As shown in Figure 1, the adoption of
machine learning frameworks varies by programming language,
with Python and C++ dominating deep learning research. As
computational power and algorithms improve, the applications
of machine learning in biology and medicine continue to
expand. Precision medicine, which aims to treat patients based
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on their genetic, environmental, and lifestyle data, relies
heavily on machine learning. Analyzing vast biomedical
datasets, extracting knowledge from unstructured records, and
identifying patterns are tasks best handled through
unsupervised and semi-supervised learning. Given that over
80% of healthcare decisions are now data-driven, the
integration of machine learning in computational biology and
medicine is critical.

Ultimately, machine learning serves as a decision support
tool—whether it's disease detection, risk prediction, treatment
planning, or drug repurposing. It supports clinicians by offering
data-backed insights, enabling faster and more confident
decisions. As healthcare increasingly adopts these technologies,
ensuring accuracy, interpretability, and ethical use will remain
paramount to maintaining trust and improving patient
outcomes.

Table 1. Roles of Deep Learning Techniques in Computational Biology

Deep Medical Image Analysis Protein Structure  Genomic Sequencing and
Learning Prediction Gene Expression Analysis
Algorithm
Convolutional Brain tumour segmentation, knee Prediction of protein —
Neural cartilage segmentation, prediction of order/disorder regions,
Network semantic descriptions from medical prediction of protein
images, segmentation of MR brain secondary  structures,
images, and coronary artery calcium prediction of protein
scoring in CT images structure properties
Sparse Organ detection in 4D patient data, Sequence-based —
Autoencoder segmentation of hippocampus from prediction of backbone

Deep Belief
Network

Deep Neural

infant brains, histological
characterization of healthy skin, and
healing wounds

Segmentation of the left ventricle of the
heart from MR data, discrimination of
retinal-based diseases

Brain tumour segmentation in MR

Coa angles and dihedrals

Prediction of protein
disorder, prediction of

secondary  structures,
and local backbone
angles

Modelling structural
binding preferences and
predicting binding sites of
RNA-binding proteins, and
predicting of splice
junctions at the DNA level

Gene expression inference,

Network images, prostate MR segmentation, prediction of enhancers,
gland instance segmentation prediction  of  splicing
patterns in individual tissues
and differences in splicing
patterns across tissues
Recurrent Classification of patterns of EEG Prediction of protein Prediction of miRNA
Neural synchronization for seizure prediction, secondary structure, precursor and miRNA
Network EEG-based lapse detection prediction of protein targets, detection of splice
contact map junctions from  DNA
sequences
Table 2. ML Libraries Categorized by Programming Language
Language Traditional =~ Machine  Learning Deep Neural Network Machine
Libraries Learning Libraries
Python Scikit-learn,  PyBrain,  Nilearn, Keras, Tensorflow (written in both

Pattern, MILK, Mixtend

C++ and Python), Nolearn, DeePy,

Pylearn2
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R Caret, Boruta, GMMBoost, H2O0,

KlaR, rminer
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Darch, DeepNet

C++ Shogun Caffe, EBLearn, Intel Deep Learning
Framework, Tensorflow (written in
both C++ and Python)

Java Encog, Spark, Mahout, MALLET, Deeplearning4j

Weka
JavaScript Cluster, LDA, Node-SVM Convnet]S

-~

=

= Python = Matlab

Java = Julia

s C++
= Lua

Figure 1. Analysis of Commonly Used Deep Learning

Frameworks

10. Conclusions

As this paper comes to a close, it is evident that machine
learning, a key part of artificial intelligence, has greatly
influenced the field of computational biology and made a

significant impact on the healthcare system in the United States.

Machine learning has enabled faster, more accurate, efficient,
and affordable decision making in a variety of applications. It
plays a vital role in disease diagnosis and prediction, medical
imaging, drug repurposing, biomedical event analysis, and
more. Over the years, the integration of machine learning into
healthcare has reached an advanced stage, now contributing to
personalized treatment strategies through precision medicine.
In the United States, one of the most striking examples of this
progress was during the COVID-19 pandemic, where machine
learning tools supported patient care, treatment research,
hospital resource management, and planning for future
healthcare demands. These developments clearly show that
artificial intelligence has become a foundational element in
healthcare decision making and is now deeply embedded in the
country’s medical systems.
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