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In the United States, early detection of diseases is critical to ensuring timely and effective 

treatment, as many conditions, if not diagnosed promptly, can become untreatable or even fatal. 

As a result, there is a growing reliance on advanced technologies to analyze complex medical 

data, reports, and images with both speed and precision. In many cases, subtle abnormalities in 

medical imaging may go unnoticed by the human eye, which is where machine learning (ML) 

has become indispensable. ML techniques are increasingly used in healthcare for data driven 

decision making, uncovering hidden patterns and anomalies that traditional methods might miss. 

Although developing such algorithms is complex, the greater challenge lies in optimizing them 

for higher accuracy while reducing processing time. Over the years, the integration of ML into 

biomedical research has significantly advanced the field, paving the way for innovations like 

precision medicine, which customizes treatments based on a patient’s genetic profile. Today, 

machine learning supports nearly every stage of delivery, from extracting critical information 

from electronic health records to diagnosing diseases through medical image analysis. Its role 

extends to patient management, resource optimization, and treatment development. Particularly, 

deep learning, powered by modern high-performance computing, has shown remarkable 

accuracy and reliability in these applications. It is now evident that in the U.S. healthcare system, 

computational biology and clinical decision making are deeply intertwined with machine 

learning, making it a core component of artificial intelligence in medicine. In this paper, the aim 

is to explore the current applications, challenges, and potential of machine learning in supporting 

healthcare decision-making in the United States, with a focus on diagnosis, medical imaging, 

and personalized treatment strategies. 
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1. Introduction 

Artificial Intelligence consists of a wide range of methods and 

technologies including machine learning, machine reasoning, 

and robotics. Among these, machine learning has gained the 

most attention in the United States healthcare sector due to its 

extensive applicability in solving complex medical challenges 

(Alanazi, 2022). This review places emphasis on machine 

learning, which is being applied through various algorithms to 

support healthcare systems in clinical decision making. The use  
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of machine learning in clinical contexts is considered 

revolutionary, as it enables systems to analyze vast amounts of 

medical data and generate informed recommendations for 

improving or maintaining patient health. 

When applied in healthcare, machine learning systems collect 

and interpret a range of patient-related data, such as clinical 

records, medical images, and genetic profiles (Shehab & others, 

2022). These systems reason through the information to suggest 

potential actions that can lead to better health outcomes. 

Initially, machine learning models are not highly accurate or 

efficient. However, through repetitive exposure to similar tasks 

and the accumulation of data, the models gradually improve 

their accuracy and reliability. This process of learning from data 

allows the systems to adapt and perform more effectively over 

time. 

Clinical decision-making supported by machine learning can 

follow two main approaches. The first is the intuitive or rapid 

method, which relies on pattern recognition and is often used 

in emergency medical situations (Jayatilake & Ganegoda, 

2021). While this approach enables quick responses, it carries 

a higher risk of error and may overlook important details. The 

second approach is more deliberate and analytical, requiring 

time and intellectual resources. Although slower, it produces 

more accurate and comprehensive outcomes. Both methods 

benefit significantly from machine learning, which enhances 

the precision and speed of decision-making by processing and 

interpreting large and complex datasets (Sanchez-Martinez & 

others, 2022). 

Healthcare data in the United States is increasingly 

heterogeneous, coming from sources such as electronic health 

records, medical imaging systems, wearable devices, and real-

time monitoring technologies (Babarinde et al., 2023). As the 

volume and complexity of this data grow, the need for advanced 

computational tools becomes critical. Machine learning 

provides solutions that efficiently manage and analyze such 

data, facilitating improvements in diagnostic accuracy, patient 

care, and overall healthcare delivery. 

The applications of machine learning in healthcare extend far 

beyond disease diagnosis and prediction. In the United States, 

these technologies support critical activities such as patient 

management, treatment research, hospital resource allocation, 

public health planning, and policymaking. The COVID-19 

pandemic highlighted the urgent need for intelligent systems 

capable of handling diverse healthcare tasks under time 

constraints (Debnath & others, 2020). During this period, 

machine learning proved valuable in supporting rapid testing, 

treatment planning, and outbreak forecasting. This has led to a 

growing interest in the field of emergency machine learning, 

which aims to develop models that respond effectively to 

healthcare crises. 

Despite its many advantages, the use of artificial intelligence in 

healthcare brings forward ethical considerations. These include 

concerns about the transparency and accountability of decisions 

made by algorithms, the risk of biased outcomes, and the 

shifting roles of healthcare professionals. In the United States, 

such concerns have resulted in regulatory measures that restrict 

the autonomous use of machine learning for final clinical 

decisions (Lysaght et al., 2019). Instead, these tools are 

employed as decision support systems that assist healthcare 

providers without replacing human judgment. This cautious 

approach ensures that the use of technology remains ethical and 

aligned with clinical standards. 

Artificial intelligence systems in healthcare are capable of 

performing predictive analysis by filtering, organizing, and 

identifying patterns in large datasets (Ahmed et al., 2020). 

These datasets are often drawn from multiple sources and 

require sophisticated models to produce accurate and timely 

insights. While these systems are not permitted to make final 

decisions independently in most jurisdictions, they play a 

critical role in supporting clinicians through enhanced 

diagnostic capabilities and treatment recommendations. 

This review aims to examine the role of machine learning in 

transforming computational decision-making in healthcare. 

The discussion begins with the initial introduction of machine 

learning in computational biology and follows its evolution to 

the present day, where it plays a central role in the development 

of precision medicine. In precision medicine, treatments are 

tailored based on a patient’s genetic information, lifestyle, and 

environmental factors, marking a significant shift from the 

traditional one-size-fits-all approach to healthcare. The 

upcoming sections of this paper will explore various machine 

learning techniques currently used in the United States 

healthcare system. Topics will include disease prediction and 

detection, medical imaging, biomedicine applications, 

biomedical event extraction, polypharmacology, and drug 

repurposing using systems biology. These discussions will 

highlight how different machine learning models contribute to 

clinical efficiency and the delivery of patient-centered care. 

The discussion section will present a comparison of various 

machine learning algorithms based on their performance in 

healthcare applications. Factors such as prediction accuracy, 

processing time, and scalability will be evaluated. Special 

attention will be given to methods used for improving model 

performance and the ability of these models to scale across 

large healthcare systems. Scalable machine learning algorithms 

are particularly important for widespread implementation in 

hospitals, clinics, and research institutions across the United 

States. 

The concluding section will summarize the findings and 

emphasize the growing dependence of modern healthcare on 

machine learning technologies. As the demand for more 

accurate, efficient, and personalized care continues to rise, 

machine learning will remain an essential part of healthcare 

innovation. From early diagnosis and individualized treatment 

to public health planning and crisis management, machine 

learning is shaping the future of healthcare by delivering data-

driven solutions that improve outcomes and optimize resources. 

2. Machine Learning Approach 

Machine learning is a scientific field that focuses on enabling 

computers to learn from data and continuously enhance their 

performance over time. It is rooted in probability and statistics 

but often proves more powerful than traditional statistical 

methods, particularly in decision-making. The inputs provided 
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to machine learning algorithms, known as features, play a 

critical role in determining the accuracy of predictions. The 

effectiveness of a model is highly dependent on the quality of 

these features. Therefore, one of the primary responsibilities of 

a machine learning developer is to identify a subset of features 

that best support the algorithm’s purpose, which can 

significantly improve accuracy (Calamuneri et al., 2017). This 

task is complex and typically requires ongoing experimentation 

to refine the selection of relevant features. 

Applying machine learning involves three essential stages: 

training, testing, and validation. The training phase is crucial 

because the quality of the training data directly influences 

model performance. During testing, the algorithm’s 

effectiveness is assessed, with attention given to minimizing 

bias and maximizing variance to ensure generalizability. An 

optimal model balances this bias-variance trade-off effectively. 

Finally, the model is evaluated using a validation dataset to 

verify its real-world applicability. Understanding different 

machine learning approaches and key algorithms commonly 

used for classification and clustering is essential for anyone 

entering the field. 

2.1 Supervised Learning 

Supervised learning involves using a labeled dataset where the 

input data is associated with known outcomes. This approach 

is primarily divided into two tasks: classification and regression. 

Classification methods assign input data to specific categories, 

while regression deals with predicting continuous output values. 

The performance of classification models is often evaluated 

using accuracy metrics, whereas regression models are 

typically assessed using root mean square error (Deo, 2015). 

Supervised learning aims to build predictive models based on 

historical data, enabling the system to forecast known outcomes. 

These tasks are often ones that a trained human expert can 

perform, but supervised models can process much larger 

datasets and identify hidden relationships more efficiently 

(Bharat et al., 2018). In healthcare and biomedical applications, 

supervised learning is frequently used for risk estimation and 

to uncover associations not immediately evident to clinicians 

(Gu & others, 2023). 

2.1.1 K-Nearest Neighbor (KNN) 

KNN is a widely used supervised classification algorithm 

applied in various domains including pattern recognition and 

anomaly detection [13]. Its straightforward implementation and 

strong performance make it popular, though it can be 

computationally expensive. Both training and test data must be 

stored, leading to high memory usage. To classify a new data 

point, the algorithm identifies the most similar instances in the 

dataset using a distance metric—commonly the Euclidean 

distance—and assigns a label based on the majority class 

(mode) or average (mean) among the nearest neighbors. 

2.1.2 Support Vector Machine (SVM) 

SVM is a powerful supervised learning algorithm primarily 

used for classification but also capable of handling regression 

tasks. In SVM, data points are plotted in an n-dimensional 

space, and the algorithm identifies the optimal hyperplane that 

separates the classes with the maximum margin (Chauhan et al., 

2019; Jabin et al., 2024). One of the strengths of SVM is its 

ability to map input features into higher dimensions using 

kernel functions, which enables it to solve non-linear 

classification problems. While SVM generally delivers high 

accuracy, it is more effective with smaller datasets. 

Performance may degrade in the presence of noisy data or large 

datasets due to increased computational complexity. 

2.1.3 Decision Trees (DTs) 

Decision trees operate using a tree-like structure in which each 

internal node represents a decision based on an attribute, each 

branch represents the outcome of that decision, and each leaf 

node corresponds to a class label (Mishra et al., 2019). This 

model is intuitive and easy to interpret, making it suitable for 

simple problems and small datasets. However, decision trees 

are prone to overfitting and can produce biased results when 

dealing with imbalanced data. Despite these limitations, they 

are effective for modeling both linear and non-linear 

relationships. 

2.1.4 Classification and Regression Trees (CARTs) 

CART is a predictive modeling technique that uses a binary tree 

structure to make decisions. Each node in the tree represents an 

input feature and a threshold that splits the data, while the 

leaves contain the predicted outcomes (Charbuty & Abdulazeez, 

2021). CART models are versatile and can be used for both 

classification and regression tasks. They work by recursively 

dividing the dataset based on feature values that maximize 

information gain or minimize error. 

2.1.5 Logistic Regression (LR) 

Logistic regression is a statistical modeling technique widely 

used in machine learning, especially in epidemiology and 

binary classification problems (Nusinovici & others, 2020). It 

uses a logistic function to model the probability of a binary 

outcome. The model consists of two main components: a linear 

component that calculates the weighted sum of inputs, and a 

link function that maps this sum to a probability value. The goal 

is to find the optimal coefficients by minimizing a cost function, 

which measures the difference between predicted and actual 

outcomes. 

2.1.6 Random Forest Algorithm (RFA) 

Random Forest is a popular ensemble learning method that can 

handle both classification and regression tasks (Ao et al., 2019). 

It builds multiple decision trees during training and uses a 

voting or averaging mechanism to make final predictions. This 

algorithm employs the bagging technique to reduce variance 

and improve accuracy. Random Forest is known for its 

robustness against overfitting, ability to handle noisy data, and 

effectiveness with imbalanced datasets. It is widely used in 

bioinformatics and healthcare analytics for its reliability and 

accuracy. 

2.1.7 Naive Bayes (NB) 

Naive Bayes is a probabilistic classifier based on Bayes’ 

theorem, commonly used for binary and multiclass 

classification (Farid et al., 2014). Despite its simplicity, it 
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performs well in many real-world situations, particularly when 

the assumption of feature independence is valid. In this method, 

the probability of each class is computed given the input 

features, and the input is assigned to the class with the highest 

probability. Naive Bayes is computationally efficient and well-

suited for high-dimensional datasets such as text classification 

and genetic data analysis. 

2.1.8 Artificial Neural Network (ANN) 

Artificial Neural Networks are inspired by the structure of 

biological neurons and are particularly effective in complex 

pattern recognition tasks such as image classification (Toraman 

et al., 2020). ANNs consist of three types of layers: input, 

hidden, and output. Each neuron in a layer is connected to every 

neuron in the next layer. The learning process involves 

adjusting weights through iterative training to minimize the 

error between predicted and actual outcomes. Key components 

include the error function, which evaluates model performance, 

the search function, which explores possible improvements, 

and the update function, which adjusts the network accordingly. 

Increasing the number of hidden layers results in deeper 

networks, which can model more complex relationships. 

2.2 Unsupervised Learning 

Unsupervised learning is applied in situations where the data 

involved cannot be clearly labeled due to a lack of prior 

knowledge about the system. In such cases, machine learning 

algorithms autonomously identify similarities and differences 

among data points. This learning method does not rely on 

labeled datasets for training. Instead, it discovers existing 

patterns in the data and groups similar items accordingly. The 

central aim of unsupervised learning is to reveal natural 

patterns or groupings in the data without predefined 

classifications (Tyagi et al., 2022). 

A major application of unsupervised learning is in precision 

medicine, where patients may be grouped based on genetic 

traits, environmental factors, or medical history. Through this 

process, patterns and relationships that were previously 

unnoticed can be revealed. Common algorithms used in 

unsupervised learning include k-means, mean shift, affinity 

propagation, DBSCAN (density-based spatial clustering of 

applications with noise), Gaussian mixture models, Markov 

random fields, ISODATA (iterative self-organizing data 

analysis technique), and fuzzy C-means. 

Clustering is a key method in unsupervised learning (Azimpour 

et al., 2020). It involves dividing data into groups, or clusters, 

based on shared features, though the cluster memberships are 

not known beforehand (Tejasree & Agilandeeswari, 2024). 

Clustering techniques can be classified into different categories 

based on their methodology: partitioning, hierarchical, grid-

based, density-based, and model-based. They can also process 

various data types, including numerical, discrete, and mixed 

types. An ideal clustering algorithm should offer fast 

processing, robustness to noise and outliers, low sensitivity to 

input order, and the ability to work with diverse data structures. 

In biomedical applications, clustering algorithms are especially 

valuable due to the vast size and complexity of biological 

datasets (Houssein et al., 2023). These algorithms help in 

automatically analyzing large datasets, saving time and 

improving efficiency. A reliable clustering method should 

satisfy several criteria: scalability with large datasets, 

robustness against outliers, consistency regardless of data order, 

minimal user-specified parameters, ability to handle mixed data 

types, detection of irregularly shaped clusters, and stability in 

the presence of duplicate entries. In healthcare, these 

algorithms can simultaneously analyze various types of data, 

allowing the system to detect multiple health conditions in a 

patient during the diagnosis process, thus streamlining 

decision-making and enhancing patient outcomes. 

2.2.1 Partition Clustering 

Partition clustering divides data objects into multiple groups 

based on dissimilarities. This technique is particularly useful 

when the number of desired clusters is known in advance, such 

as in small gene expression datasets. However, a limitation is 

the need for users to specify the number of clusters manually. 

Despite this, partition-based methods are frequently applied in 

bioinformatics. Notable algorithms in this category include 

fuzzy k-means, COOLCAT, CLARA (clustering large 

applications), and CLARANS (clustering large applications 

based on randomized search) (Kocheturov et al., 2019). 

2.2.2 Graph-Based Clustering 

Graph-based clustering methods are commonly used in 

analyzing biological networks or interactomes. These 

techniques help predict complex relationships and sequence 

networks by treating data points as nodes in a graph. While 

powerful, these algorithms can be slow and sensitive to 

parameter settings defined by the user. Examples include super-

paramagnetic clustering (SPC), the Markov cluster algorithm 

(MCL), molecular complex detection (MCODE), and restricted 

neighborhood search clustering (RNSC) (Z. Zhang et al., 2018). 

2.2.3 Hierarchical Clustering 

Hierarchical clustering organizes data into a tree structure of 

nodes, where each node represents a cluster. Parent nodes can 

have multiple child nodes, and each data point can be traced 

through this tree. This method is widely used in bioinformatics 

due to its flexibility in analyzing data at various levels of detail 

(Nielsen, 2016). However, it has drawbacks such as a slower 

processing speed and irreversible errors when incorrect merges 

occur. These limitations can result in the loss of significant 

local patterns. Applications of hierarchical clustering include 

protein sequence family classification and gene similarity 

mapping. Prominent examples are Chameleon, ROCK (robust 

clustering using links), LIMBO (scalable information 

bottleneck), and spectral clustering. 

2.2.4 Density-Based Clustering 

Density-based clustering identifies groups in the data by 

locating dense regions separated by areas of lower density. It is 

particularly useful in bioinformatics for identifying tightly 

connected subspaces within interactome networks. This 

approach excels at detecting clusters of arbitrary shapes and 

offers time efficiency. While some density-based algorithms 

require user-defined parameters, they do not necessitate a 

predefined number of clusters. Common algorithms in this 
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category include OPTICS (ordering points to identify the 

clustering structure), CLIQUE (clustering in quest), 

DENCLUE (density-based clustering), and CACTUS 

(clustering categorical data using summaries) (Bhattacharjee & 

Mitra, 2020). 

2.2.5 Model-Based Clustering 

Model-based clustering assumes that the data follows a certain 

statistical model. The structure of this model, which can be 

specified and modified by the user, determines how the 

algorithm identifies clusters (Bouveyron & Brunet-Saumard, 

2014). This technique is used in bioinformatics for 

incorporating existing knowledge into the analysis of gene 

expression, sequence data, and interactomes. Although 

effective, it can be computationally intensive when applied to 

large datasets. Moreover, inaccurate assumptions about the 

model may lead to misleading results. Representative 

algorithms in this category include SVM-based clustering, 

COBWEB, and AutoClass. 

2.3 Semi-supervised Learning 

Semi-supervised learning operates using a combination of 

labeled and unlabeled data. In this approach, only a portion of 

the training dataset contains known outcomes, while the 

remaining data lacks explicit labels. This technique is 

particularly useful when it is impractical to label an entire 

dataset but possible to make reliable predictions using partially 

labeled data. Semi-supervised learning combines the strengths 

of both supervised and unsupervised learning, making it a 

powerful tool for scenarios where data labeling is costly or 

time-consuming. It has become increasingly relevant in fields 

like healthcare, where vast amounts of data are often available, 

but not all of it is annotated. 

2.4 Evolutionary Learning 

Evolutionary learning draws inspiration from natural selection 

and is widely used in the biological sciences. This approach is 

employed to understand the behavior and survival patterns of 

biological organisms. It helps in predicting outcomes such as 

adaptability and fitness levels. By simulating evolutionary 

processes, the algorithm iteratively improves its predictions, 

making it suitable for problems where the objective is to find 

optimal solutions under changing conditions. 

2.5 Active Learning 

Active learning is a strategy where the model is trained with a 

limited number of labeled instances and selectively queries an 

external source—such as a human expert or a database—to 

label the most informative data points. This approach enables 

the algorithm to improve efficiently by focusing on uncertain 

or ambiguous samples. It is especially advantageous in 

situations with limited resources or labeling budgets. The 

dynamic interaction between the model and the information 

source allows it to refine its understanding and improve 

accuracy with minimal labeled data. Active learning is 

considered a modern, cost-effective machine learning method 

that supports intelligent decision making. 

2.6 Deep Learning 

Deep learning represents an advanced stage of machine 

learning and is centered around neural networks with multiple 

layers. These deep neural networks are capable of learning 

complex patterns and relationships in large and varied datasets. 

Deep learning models are highly effective in tasks such as 

image recognition, natural language processing, and 

biomedical data interpretation (X. Wang et al., 2020).They can 

generalize across different types of problems and provide 

accurate predictions, even when dealing with high-dimensional 

or unstructured data. This flexibility makes deep learning 

particularly valuable in healthcare and biomedical research, 

where data complexity is often a significant challenge. 

2.7 Reinforcement Learning 

Reinforcement learning is a unique machine learning paradigm 

where the model learns through trial and error in an interactive 

environment. The algorithm receives feedback in the form of 

rewards or penalties based on its actions and uses this feedback 

to improve future performance. This iterative learning process 

allows the system to autonomously adapt to dynamic 

conditions. Reinforcement learning has applications in areas 

such as robotics, personalized medicine, and adaptive treatment 

strategies, where continuous learning from interactions is 

essential. 

After outlining these various machine learning approaches, it is 

helpful to explore how they are practically applied in the field 

of biomedicine. For instance, in neuroscience, machine 

learning classifiers are utilized to examine both the functional 

and structural aspects of the brain. In oncology, algorithms are 

used for cancer detection and prognosis, with support vector 

machines (SVMs) playing a role in diagnosing prostate cancer. 

Hierarchical clustering methods have been employed to study 

Alzheimer’s disease, while artificial neural networks (ANN) 

have been applied to classify subtypes of psychogenic 

nonepileptic seizures (Vasta & others, 2018). These examples 

illustrate the significant impact machine learning has on 

advancing biomedical research and clinical applications. With 

an understanding of the various machine learning techniques 

and their corresponding algorithms, the next step is to delve 

deeper into their practical uses in computational biology and 

medicine. 

3. Machine Learning in Disease Prediction and 

Detection 

Machine learning techniques have been widely adopted in the 

early detection and diagnosis of various diseases, as early 

intervention often results in simpler treatment protocols and 

significantly improves patient outcomes. However, the 

effectiveness of these algorithms varies based on multiple 

factors including the type of algorithm used, the quality of input 

features, and the training dataset. This section highlights 

specific diseases where machine learning has been successfully 

applied, emphasizing the importance of early diagnosis, the 

techniques utilized, and the feature sets involved. A detailed 

comparative analysis of these approaches is provided later in 

the discussion section. 
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3.1 Cancer 

Cancer typically begins with abnormal cell behavior where 

signals controlling cell growth and division become faulty, 

leading to uncontrolled multiplication and tumor formation. 

Among non-invasive techniques, thermography has emerged as 

a promising diagnostic tool due to its safety and effectiveness. 

From thermal images, machine learning algorithms, supported 

by feature extraction techniques such as SIFT and SURF, can 

detect potential cancerous growths. These features can be 

refined using Principal Component Analysis (PCA) to improve 

interpretability and accuracy. 

3.1.1 Breast Cancer 

Breast cancer is one of the most prevalent cancers among 

women and remains a leading cause of mortality. Early 

diagnosis through MRI, mammography, ultrasound, or biopsy 

significantly increases the chances of successful treatment. 

However, distinguishing between benign and malignant tumors 

can be challenging, which is where machine learning proves 

invaluable. These systems can autonomously improve over 

time, enhancing diagnostic accuracy. 

The process typically involves three stages: preprocessing, 

feature extraction, and classification. Features such as image 

smoothness, coarseness, depth, and regularity are extracted 

using segmentation. While converting images to binary helps 

isolate information, some critical features are lost, prompting 

the use of grayscale formats instead. Discrete Wavelet 

Transformation (DWT) is employed to transform images into 

frequency domains, generating approximation and detail 

coefficient matrices used for classification by machine learning 

algorithms. 

3.1.2 Lung Cancer 

Lung cancer originates in the respiratory system and can spread 

to other organs if undetected. Risk factors include tobacco use, 

air pollution, and underlying respiratory conditions. Early 

symptoms are often absent, making early diagnosis difficult 

and increasing the danger. 

Computed Tomography (CT) imaging provides clearer images 

than MRI or X-rays and is commonly used in diagnostics. 

Image preprocessing includes grayscale conversion, noise 

reduction using median filters, and segmentation to isolate 

relevant areas. Key features like area, perimeter, and 

eccentricity are then extracted. 

Detecting Small-Cell Lung Cancer (SCLC) is particularly 

difficult due to its visual similarity to healthy tissues. Deep 

learning methods, particularly Convolutional Neural Networks 

(CNN), offer a solution but require large training datasets. The 

Entropy Degradation Method (EDM) addresses this issue by 

converting histograms into scores and using logistic functions 

for classification. Although the accuracy of this approach is 

promising, it can be further enhanced with larger datasets and 

deeper network structures. 

3.1.3 Acute Lymphoblastic Leukemia (ALL) 

ALL is a rapidly progressing blood cancer characterized by the 

accumulation of immature lymphocytes, which hinders the 

production of healthy blood cells. It can be fatal within weeks 

if untreated. Symptoms include fatigue, pale skin, fever, joint 

pain, and swollen lymph nodes. 

Several machine learning models have been used for detection, 

including KNN, SVM, Naive Bayes, RBFN, and MLP. The 

workflow usually involves preprocessing, feature extraction, 

model training, and performance evaluation. Cropping 

highlights, the region of interest, and Gaussian blur is used to 

enhance image quality. Features used for classification include 

color, geometry, texture, image moments, and local binary 

patterns. 

3.2 Diabetes 

Diabetes is a chronic condition caused by elevated blood 

glucose levels and can significantly affect quality of life if not 

diagnosed early. It is categorized into Type 1, Type 2, and 

gestational diabetes. 

Discriminant Analysis (DA) is often used to classify diabetes 

by deriving equations based on input features such as blood 

pressure, glucose levels, insulin ratio, skinfold thickness, age, 

and more. Machine learning models like GNB, Logistic 

Regression, KNN, CART, RFA, and SVM have shown 

potential in predicting Type 2 diabetes using data from 

electronic medical records (EMRs). 

Neural networks, particularly feed-forward models trained via 

backpropagation, have demonstrated higher accuracy. Key 

input features include number of pregnancies, insulin levels, 

BMI, and plasma glucose levels. Deep neural networks (DNNs), 

trained with five-fold and ten-fold cross-validation, have 

achieved up to 97% accuracy in diabetes prediction. 

3.3 Heart Diseases 

Heart diseases are critical health conditions often caused by 

blocked coronary arteries. Risk factors include high blood 

pressure, smoking, lack of exercise, and age. Symptoms may 

include fatigue, breathlessness, and swollen extremities. 

Precision medicine in cardiology addresses diagnostics and 

therapeutic planning. It supports personalized interventions 

based on individual characteristics, including genomics and 

gender-specific differences. Technologies such as patient 

monitoring and clinical decision support systems (CDSSs) 

benefit from machine learning integration. 

Blood and genetic tests are essential in identifying heart disease, 

especially ischemic conditions. Precision cardiology focuses 

on areas such as cardiac genetics and cardiac oncology. 

Machine learning methods like CNN, RNN, NLP, SVM, and 

LSTM are used to enhance CDSS capabilities. 

Heart disease prediction involves preprocessing data, selecting 

features, validating models, and evaluating classifier 

performance. Preprocessing techniques include handling 

missing data and normalizing input. Feature selection using 

Relief, mRMR, and LASSO improves model efficiency and 

accuracy (Silva & Ramos, 2025). 



Hossain et al. (2025)                                                                                                                                                JAMSAI, 1(2), pp.1-XY.  

 

7 

 

3.4 Chronic Kidney Disease (CKD) 

CKD gradually impairs kidney function, potentially leading to 

failure. Although diagnosis typically involves lab tests, 

imaging, and biopsy, these methods can be invasive and costly. 

Machine learning offers a non-invasive alternative (Liu et al., 

2020). 

While SVM is widely used in many medical applications, 

research on its use in CKD is limited. Instead, ANN, Decision 

Trees, and Logistic Regression are commonly applied. Among 

these, ANN has shown superior diagnostic performance for 

CKD detection. 

3.5 Parkinson’s Disease (PD) 

PD is a neurodegenerative disorder that affects movement and 

coordination due to reduced dopamine production. Symptoms 

include tremors, stiffness, and postural instability. There is no 

known cure, and treatment options are limited. 

Machine learning has been applied to video analysis and voice 

recordings to distinguish between PD patients and healthy 

individuals (Saikia et al., 2020). Feature selection methods like 

PCA and Genetic Algorithms (GA) are used. GA, inspired by 

natural selection, evaluates potential solutions through 

mutation and crossover processes to find optimal features. PCA 

helps reduce dimensionality and extract meaningful patterns 

from complex datasets. 

3.6 Dermatological Diseases 

Dermatological conditions are diverse and often difficult to 

diagnose due to limited expertise. Early detection is crucial for 

conditions like eczema, herpes, melanoma, and psoriasis. 

A common approach involves three phases: data collection and 

augmentation, model training, and image analysis (Giger, 

2018). Data augmentation techniques include SMOTE and 

various image preprocessing methods like greyscaling, 

sharpening, noise reduction, and contrast adjustment. A well-

trained CNN model can address overfitting and improve 

prediction. 

In the final stage, features from the last CNN layer are passed 

to an SVM classifier. For this to work, the SVM must first be 

trained using these CNN-generated features, which it converts 

into vectors for classification. 

4. Machine Learning in Medical Imaging 

Medical imaging has emerged as one of the fastest-growing 

domains in biomedical research due to its pivotal role in 

diagnosing a wide range of diseases. The integration of 

machine learning with medical imaging has further accelerated 

advancements in this field by enabling the automated extraction 

and classification of critical features from images. The typical 

workflow involves segmenting the input image to focus on 

regions of interest, applying feature extraction techniques to 

highlight relevant patterns, eliminating noise, and finally 

classifying the features to make diagnostic predictions. 

In today’s medical landscape, accurately analyzing large 

volumes of imaging data is crucial for disease diagnosis and 

treatment planning. Machine learning has been extensively 

applied across various biomedical tasks, including classifying 

patient data based on attributes, examining medical records, 

detecting diseases, generating treatment recommendations, and 

enhancing diagnostic accuracy through image analysis 

(Vayadande et al., 2024). 

Medical imaging has also significantly improved surgical 

planning, helping physicians tailor procedures to individual 

patient conditions. For example, the complexity of skull-base 

surgery has traditionally posed significant challenges due to 

anatomical variability. However, the adoption of endonasal 

endoscopic techniques allows surgeons to visualize the skull 

base and associated neurovascular structures through the nasal 

cavity, minimizing brain displacement and offering enhanced 

visibility with multi-angled, close-up views. 

Magnetic resonance imaging (MRI) is particularly effective in 

planning treatments for conditions such as rectal cancer, as it 

provides detailed visualization of tumor extent and essential 

prognostic data. This information guides the development of 

personalized therapeutic strategies for each patient. Image-

guided surgeries, in comparison to conventional methods, offer 

benefits such as reduced invasiveness, more precise targeting, 

and improved outcomes. These surgeries rely heavily on 

imaging for pre-operative planning, intra-operative navigation, 

and post-operative assessment. In neurosurgery, where 

precision is paramount, medical imaging ensures accurate 

localization of targets and supports instrument guidance to 

minimize damage to surrounding tissues. Modalities such as 

MRI, CT, ultrasound, PET, SPECT, and fluoroscopy are 

routinely used to support procedures like biopsies, tumor 

resections, epilepsy surgery, and vascular interventions 

(Folorunso et al., 2020). Advances in 3D imaging have also 

facilitated virtual modeling of anatomical structures, enhancing 

both understanding and execution of surgical procedures. 

Technologies such as 3D ultrasound and fetal MRI are 

increasingly being adopted in clinical practice. 

Machine learning plays a transformative role in medical 

imaging by uncovering subtle patterns not easily perceived by 

human observers. Unsupervised learning techniques like 

clustering allow for analysis of large imaging datasets to 

support surgical decisions. These algorithms can help identify 

missed anomalies or validate the appropriateness of chosen 

surgical approaches. 

Due to the complexity of anatomical structures, standard 

mathematical modeling often falls short in medical image 

interpretation. Machine learning overcomes this by applying 

pixel-level analysis, which does not require conventional 

feature extraction or segmentation. This enables effective 

information retrieval even from low-contrast images, although 

the approach requires extended training time due to high data 

dimensionality. Techniques such as histogram equalization 

(HE) are frequently used to enhance contrast, and its variants 

have further improved algorithmic performance. 

Common machine learning methods applied in image analysis 

include linear discriminant analysis (LDA), support vector 

machines (SVM), and decision trees (DT). Additionally, 

texture-based descriptors like local binary patterns and the 
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application of neural networks provide powerful tools for 

interpreting biological images. These techniques are also 

embedded in medical expert systems to support clinical 

decision-making. 

Convolutional Neural Networks (CNNs) are particularly 

effective for image-based tasks. With multiple convolutional 

layers, CNNs can transform input images into meaningful 

features. Image classification involves identifying overall 

patterns associated with diseases, while object classification 

focuses on smaller, specific regions within medical images. 

Deep learning techniques such as CNNs enable disease pattern 

recognition, categorization, and quantification at an advanced 

level. 

One of the key advantages of computers is their ability to 

perform complex tasks consistently and efficiently. In recent 

years, machine learning has demonstrated a remarkable 

capacity to tackle problems once deemed too intricate for 

automation. These systems can even detect patterns beyond 

human perception. 

In the context of medical imaging, a few core terms are 

essential to understand. "Classification" refers to labeling 

pixels or regions with specific categories. A "model" comprises 

the decision-making rules learned during training, while an 

"algorithm" outlines the steps used to create the model. 

"Labeled data" provide examples for learning specific classes. 

The "training set" is used to teach the algorithm, while a 

"validation set" helps evaluate its performance. In neural 

networks, a "node" is a unit combining inputs with an activation 

function, and a "layer" consists of multiple interconnected 

nodes. "Segmentation" divides an image into regions of interest. 

"Overfitting" occurs when a model is overly tailored to the 

training data and fails to generalize. "Features" are numerical 

values that represent characteristics of an image, such as pixel 

intensity, edge strength, or regional variance. Effective feature 

selection is essential for building accurate models. 

Image recognition and time-series classification in biomedical 

applications often involve nonlinear classification challenges. 

Traditional algorithms and feature extraction methods struggle 

with highly nonlinear data. Deep neural networks (DNNs), 

however, overcome this by adding multiple layers and neurons, 

allowing for complex function approximation. Ensemble 

learning is another powerful approach in which multiple 

classifiers are combined to form a more robust decision model. 

In both SVM and ensemble learning, nonlinear functions are 

formed using combinations of kernel methods. Ensemble 

strategies typically fall into four categories: modifying training 

samples (e.g., bagging, boosting, cross-validation), altering 

input features (e.g., random subspace, feature decimation), 

adjusting class labels (e.g., output coding, label switching), and 

introducing randomness into learning algorithms (e.g., 

backpropagation with randomized weights). The goal is to 

create diverse classifiers that, when combined, deliver superior 

overall performance. 

Machine learning continues to revolutionize medical imaging, 

enabling more accurate diagnoses, efficient surgical planning, 

and data-driven treatment strategies that were once only 

possible through human expertise. 

5. Machine Learning in Biomedicine 

Gene expression datasets play a vital role in biomedical 

research as they capture dynamic changes in gene activity over 

time. These datasets typically consist of numerical matrices, 

representing the increasing or decreasing expression levels of 

specific genes across various time points or tissue samples. 

Similarly, in protein-protein interaction (PPI) networks, nodes 

denote biomolecules and edges signify interactions between 

them. When applying clustering algorithms in such domains, 

minimizing user-defined parameters is critical, as inaccurate 

input values can reduce the effectiveness and accuracy of the 

model. 

Machine learning has become an essential component of 

modern biomedical science, offering powerful tools to address 

complex challenges. In biomedicine, its applications are 

diverse, ranging from predicting protein structure and function 

based on genetic sequences to identifying optimal dietary plans 

tailored to an individual’s clinical profile and microbiome. 

Moreover, machine learning is instrumental in analyzing real-

time, high-resolution physiological data used in various 

medical applications. There are three primary areas where 

machine learning significantly contributes to biomedicine. First, 

it enhances prognostic models. Traditional prognosis tools 

often rely on a limited number of manually entered variables, 

whereas machine learning models can extract and analyze 

thousands of features directly from electronic health records 

(EHRs), improving predictive accuracy. Second, it streamlines 

the workload of radiologists and pathologists by automating 

image analysis. Machine learning algorithms can interpret 

medical images with remarkable precision—often surpassing 

human capabilities—while operating continuously without 

fatigue. Third, it improves diagnostic accuracy by reducing 

human error. However, a significant challenge in this area is 

that the output is not always binary, which complicates 

algorithm training and requires complex, structured data 

preprocessing to handle the often-unstructured format of EHRs. 

While raw data alone holds little value, machine learning 

algorithms can interpret, analyze, and extract actionable 

insights from it. This capability has made machine learning 

tools indispensable in clinical practice. Many traditional 

computer-based systems in medicine are expert systems that 

apply a predefined set of rules to clinical scenarios, resembling 

the approach used by medical students learning through general 

principles. In contrast, machine learning does not rely on hand-

crafted rules. Instead, it learns patterns and associations directly 

from patient-level data, processing vast numbers of variables to 

find predictive combinations. A key strength of machine 

learning lies in its ability to manage thousands of predictors—

sometimes even more than the number of observations—and 

synthesize them in nonlinear, interactive ways to make accurate 

predictions. For reliable evaluation, machine learning models 

must be tested on truly independent validation datasets drawn 

from different populations and timeframes, ensuring no overlap 

with the training data. Failure to use independent datasets may 

lead to overfitting and poor generalization. High-quality, high-

volume datasets are essential for optimal algorithm 

performance. However, biased datasets can compromise both 

accuracy and applicability. It's important to note that machine 
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learning cannot resolve fundamental challenges related to 

causal inference in observational studies. While predictive 

accuracy may be high, these models often reflect correlations 

rather than causative relationships. 

Many current studies in medical machine learning focus on 

binary outcomes, such as whether a patient has a particular 

disease. Some also assess disease staging, but most are disease-

specific and do not address multiple conditions simultaneously. 

To overcome this limitation, a technique known as Ensemble 

Label Power-set Pruned Dataset Joint Decomposition 

(ELPPJD) has been proposed. ELPPJD improves on the Label 

Power-set (LP) method, which accounts for label correlations 

but suffers from increased time complexity and imbalanced 

class distributions as label sets grow (Folorunso et al., 2020; 

Yoganathan et al., 2023). ELPPJD addresses these issues by 

dividing the training dataset into disjoint subsets and using 

similarity thresholds to cluster similar labels. This approach 

employs two main strategies for subset partitioning: Size 

Balanced (SB) and Label Similarity (LS). 

Alternative multilabel classification methods include Random 

k-label sets (RAKEL) and Hierarchy of Multilabel Classifiers 

(HOMER). RAKEL operates on the MEKA framework and 

utilizes the C4.5 algorithm, while HOMER is based on the 

MULAN platform and employs Random Forest (RF) classifiers 

(Zhou & Zhong, 2015). Among the two, RAKEL generally 

performs better. However, ELPPJD—particularly when using 

the LS partitioning strategy—has demonstrated superior 

performance compared to both RAKEL and HOMER, making 

it a promising method for handling multilabel biomedical 

classification tasks. 

6. Machine Learning in Biomedical Event 

Extraction 

The relationships between diseases and drugs, diseases and 

genes, drug-drug interactions, and protein-protein interactions 

represent highly complex biological events. Accurately and 

efficiently extracting such events from scientific literature is 

essential for advancing biomedical research. Due to the 

exponential growth of unstructured and semi-structured data in 

biomedical publications, text mining techniques have become 

increasingly important (Lee et al., 2016). 

While pattern-based methods have traditionally been used for 

extracting relationships in biomedical texts, they are not widely 

applied in event extraction due to their limitations. Biomedical 

event extraction systems are generally categorized into two 

main types: rule-based systems and machine learning-based 

systems. In the machine learning approach, event extraction is 

typically formulated as a classification problem. However, one 

of the primary challenges in this domain is dealing with highly 

imbalanced datasets, which can skew model performance. 

Support Vector Machines (SVMs) help address this issue 

through class weighting strategies that balance the training 

process (Tao & others, 2019). Machine learning-based event 

extraction models are further divided into three architectures. 

The first is the pipeline model, which has achieved promising 

results but suffers from error propagation, as each step is 

dependent on the output of the previous one. The second is the 

joint model, which resolves this issue by processing all tasks 

simultaneously, although it demands significantly more 

computational resources. The third is the pairwise model, 

which combines features of both pipeline and joint models. It 

offers improved speed compared to the joint model and higher 

accuracy than the pipeline model, effectively managing multi-

class and multi-label classification without being hindered by 

data imbalance. 

A comprehensive machine learning system designed to extract 

biomedical events from imbalanced datasets typically begins 

with text preprocessing. This step involves analyzing token-

level, sentence-level, syntactic dependency, and external 

resource features. Following preprocessing, a sample selection 

phase identifies frequent sequential patterns within the text to 

capture recurring biological events. These patterns are essential 

for detecting multi-argument events. The final output is 

generated through a joint scoring mechanism, where tools like 

sentence2vec, based on convolutional deep structured semantic 

models (C-DSSMs), compute semantic relevance scores to 

enhance interpretation (Javaid et al., 2022). 

SVMs are commonly used to divide biomedical event 

extraction into multiple classification tasks. These tasks include 

identifying trigger words that signal events and detecting the 

associated entities—such as genes and proteins—that 

participate in these events. While supervised learning models 

perform well in these tasks, they often struggle with sparse or 

limited training data, particularly when dealing with rare or 

previously unseen features. 

To address these limitations, researchers have turned to semi-

supervised and unsupervised learning methods. Large volumes 

of unlabeled data, such as those found in repositories like 

PubMed, offer valuable information that can supplement 

labeled datasets. A strategy known as event feature coupling 

generalization has been proposed to bridge the gap, allowing 

features derived from labeled data to be enhanced by 

incorporating insights from unlabeled data. This hybrid 

approach improves performance and mitigates the issues 

caused by sparse training features, enabling more robust event 

extraction systems. 

In addition to event extraction, understanding protein function 

is another critical area in biomedical research. Proteins are the 

end products of gene expression and play a central role in 

biological systems. Despite the existence of extensive protein 

sequence databases, many proteins remain functionally 

uncharacterized due to the slow pace of experimental 

annotation. This discrepancy highlights the need for 

computational approaches capable of analyzing vast protein 

datasets with minimal labeled data. Machine learning provides 

an effective solution for this challenge. By analyzing protein 

sequences, machine learning models can infer structural, 

functional, and evolutionary characteristics. Protein 

classification aims to identify these traits with precision, and 

the use of machine learning has become indispensable in 

mining functional information from large-scale protein 

databases. These algorithms have significantly accelerated the 
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ability of researchers to classify proteins, thereby enhancing the 

understanding of gene functions at the proteome level. 

7. Machine Learning Approaches to Poly 

pharmacology 

Poly pharmacology is a growing field in biomedical research 

that focuses on developing treatments capable of interacting 

with multiple molecular targets rather than a single receptor. 

Drug efficacy and toxicity are shaped by a range of complex 

interactions involving pharmacodynamic and pharmacokinetic 

properties, as well as genetic, epigenetic, and environmental 

influences—even when the drug is designed to act on one or 

several specific targets. To effectively analyze and predict drug 

responses both in vitro and in vivo, advanced computational 

tools, particularly those based on machine learning, are 

essential (Kabir & Muth, 2022). 

Accurately identifying drug-target interactions on a proteome-

wide scale is a fundamental step in understanding and 

predicting drug responses. Beyond genetic and epigenetic 

variations, the cellular environment—including intercellular 

communication and variability between individual cells—must 

be factored into predictive models. Systems biology 

approaches provide a comprehensive framework for mapping 

the interactions among these components, enabling more 

informed drug discovery efforts. 

New computational strategies are needed to model protein-

ligand binding events more precisely, particularly by 

calculating free-energy landscapes associated with the 

association and dissociation of molecular complexes (Q. Zhang 

et al., 2022). These calculations support the investigation of 

both high- and low-affinity binding events across the entire 

proteome. Self-organizing maps, a form of unsupervised 

machine learning, are commonly used to cluster drug 

compounds. Combining the structural features of receptors 

with chemical fingerprints of ligands allows the development 

of machine learning models capable of predicting drug-target 

interactions. Four computational areas are especially crucial for 

advancing polypharmacology: large-scale drug-target 

interaction prediction, quantitative modeling of protein-ligand 

interactions, integrated analysis of biological networks, and the 

dynamic simulation of network behavior, including 

stoichiometry and kinetics. 

Next-generation sequencing (NGS) encompasses both DNA 

and RNA sequencing technologies. It works by breaking 

genetic material into smaller fragments and determining the 

order of nucleotide bases within each segment (M. Wang, 2021). 

NGS can be categorized into whole-genome sequencing 

(WGS), whole-exome sequencing (WES) of coding regions, 

and targeted sequencing of specific genes linked to disease. In 

clinical practice, WGS and WES are increasingly used for 

diagnosing complex neurodevelopmental disorders such as 

autism, epilepsy, and intellectual disabilities. 

Several commercially available NGS platforms employ 

different techniques to generate sequencing data, and ongoing 

technological improvements have reduced error rates 

considerably. Despite these advancements, Sanger sequencing 

remains the gold standard for validating genetic variants due to 

its superior accuracy. 

When machine learning techniques are applied to clinical data, 

they enable the creation of prediction models that can assist in 

various aspects of medical practice—from early warning 

systems to advanced imaging diagnostics that rival expert 

human performance. These models generate predictions based 

on patterns in existing data. However, a well-known cautionary 

example is the failure of Google Flu, which illustrated the 

pitfalls of using limited historical data for time-series 

forecasting. 

Research in clinical decision support systems has shown that 

relying solely on large volumes of historical data does not 

necessarily improve prediction accuracy. In many cases, more 

accurate results are obtained by focusing on the most recent 

year of data rather than attempting to model long-term trends. 

The primary goal in evaluating prediction models is not to 

replicate past outcomes, but to forecast future events with 

precision. 

While machine learning can outperform traditional regression 

techniques by uncovering nonlinear and complex relationships 

in the data, there are fundamental limitations. Even the most 

powerful algorithms cannot extract information that is not 

present in the dataset. Consequently, the predictive power of 

these models is restricted when they rely solely on clinical data. 

Integrating additional, relevant data streams can improve 

prediction performance, but there are inherent constraints. 

Small discrepancies or rounding errors—often considered 

negligible—can accumulate over time and significantly distort 

long-term predictions. This highlights the unpredictability of 

complex systems and the challenges associated with 

forecasting in medicine, even with advanced computational 

tools. 

8. Machine Learning for Drug Repurposing 

Using System Biology 

More than 90% of drugs that enter the early phases of clinical 

trials ultimately fail, primarily due to adverse reactions, 

undesirable side effects, or insufficient efficacy (Jain et al., 

2023). To address these challenges, drug repurposing has 

emerged as a promising alternative. Drug repurposing 

strategies can be categorized as either drug-centric or disease-

centric. A drug that exhibits a strong negative correlation with 

a disease—meaning it counteracts the disease's gene expression 

profile—is often considered a viable candidate for repurposing. 

One of the earliest efforts in this area was the Connectivity Map 

project, which aimed to establish functional links between 

drugs and between drugs and diseases. Systems biology plays 

a vital role in this context by analyzing how drugs influence 

complex biological systems, including gene interactions and 

cellular pathways (Živanović & Filipović, 2024). In these 

models, drugs are ranked based on the extent to which they 

perturb disease-associated genes. 

A commonly used framework in drug repurposing is the Drug-

Disease Network (DDN), which integrates information about 
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disease-related genes, drug targets, signaling pathways, and 

gene-gene interactions (Conte & others, 2020). The DDN maps 

out all known interactions relevant to a particular disease as 

defined by sources like the Kyoto Encyclopedia of Genes and 

Genomes (KEGG). To determine whether a drug could be 

repurposed for a specific disease, a repurposing score is 

calculated using the Pearson correlation coefficient between the 

gene perturbation signatures of the drug and the disease. This 

coefficient ranges from -1 to 1. A high positive score indicates 

similar biological effects, while a high negative score suggests 

the drug may effectively counteract the disease, making it a 

strong candidate for treatment. 

This framework illustrates how machine learning supports 

decision making throughout the continuum of patient care. 

From the moment a patient is diagnosed, each step—whether it 

involves identifying the disease, uncovering comorbid 

conditions, or selecting appropriate treatments—is guided by 

machine learning models that help clinicians make timely and 

accurate decisions. These tools assist in disease prediction, 

diagnosis, clinical decision support, and evaluating drug 

efficacy and compatibility. 

Even after a patient recovers, machine learning continues to 

play a role in preventive healthcare. By analyzing electronic 

health records (EHRs), machine learning algorithms can 

identify potential future health risks, allowing for early 

intervention. In this way, machine learning not only enhances 

diagnosis and treatment but also contributes to long-term 

patient monitoring and preventive care strategies. 

9. Discussion 

This review has explored the evolving role of machine learning 

in healthcare, focusing on its applications in disease detection, 

medical imaging, drug repurposing, and precision medicine. 

Among the core observations, the performance of a machine 

learning algorithm is primarily judged by its classification 

accuracy and log loss—higher accuracy and lower log loss 

indicate a more effective model. However, algorithm 

performance also depends heavily on the dataset, feature 

selection, preprocessing, and hardware capabilities, making 

algorithm selection an iterative and context-specific process. 

In clustering tasks, especially when dealing with biomedical 

data that is often high-dimensional and nonspherical, user-

defined parameters like the number of clusters or starting points 

can significantly impact outcomes. Automatic Density 

Clustering with Multiple Kernels (ADCMK) addresses this by 

automatically determining kernel weights, cutoff distances, and 

centroids, leading to more consistent clustering results. This 

method is particularly beneficial for unsupervised learning 

where label data is unavailable. 

Algorithm effectiveness varies across medical domains. For 

example, artificial neural networks (ANNs) have shown 

superior performance in diagnosing kidney disease, while 

support vector machines (SVMs) perform well in lung cancer 

detection and staging. In breast cancer prediction, deep neural 

networks (DNNs) have outperformed ANNs, SVMs, and k-

nearest neighbors (KNN). Meanwhile, logistic regression is 

less suitable for complex disease modeling due to its simplicity, 

and KNN struggles with large-scale cancer datasets. 

Convolutional Neural Networks (CNNs) are highly effective in 

extracting features from both structured and unstructured 

medical data. CNN-based unimodal and multimodal disease 

risk prediction models (CNN-UDRP and CNN-MDRP) further 

enhance prediction accuracy by representing test results using 

word embeddings from natural language processing (NLP) . 

Medical imaging is another area where machine learning has 

significantly improved diagnostic processes. CNNs with 

adaptive sliding window fusion provide robust, high-accuracy 

classification, especially for tumor detection. Deep learning 

combines unsupervised pretraining with supervised fine-tuning, 

enabling better learning from data with minimal labels. For 

biomedical time series, where traditional CNNs may fall short, 

multi-channel CNNs offer improved performance. The 

integration of 3D printing with medical imaging has 

revolutionized surgical planning and prosthetic design. By 

converting medical image data into physical models, clinicians 

can perform complex surgeries with higher precision. 

Advanced devices such as bionic eyes, antibacterial teeth, and 

hyperelastic bones have been successfully developed using 3D 

printing. These innovations, summarized in Table 1, highlight 

how machine learning and biomedical data analytics are 

contributing to personalized medicine and bio-prosthetic 

advancements. To effectively analyze high-dimensional 

biomedical data, techniques such as t-distributed stochastic 

neighbor embedding (t-SNE) and ADCMK have shown 

promising results in visualizing and clustering unlabeled data. 

In protein classification and biomedical event extraction, 

limited and imbalanced data present significant challenges. 

Semi-supervised learning techniques like the transductive 

SVM (TSVM) and expectation-maximization models have 

been introduced to enhance performance by leveraging 

unlabelled datasets. 

In polypharmacology, the integration of machine learning must 

be approached cautiously. Even identical genetic and 

environmental conditions can lead to unpredictable outcomes, 

highlighting the limitations of purely data-driven models. 

Although machine learning excels at prediction, it often lacks 

interpretability and does not inherently provide causal 

explanations. Nevertheless, it supports clinicians in resource 

allocation and decision-making by highlighting trends and risk 

factors more efficiently than manual review. 

Improving the efficiency and accuracy of machine learning 

models involves multiple strategies. Principal Component 

Analysis (PCA) and Genetic Algorithms (GA) have proven 

effective for feature selection, improving metrics such as 

positive predictive value, negative predictive value, sensitivity, 

and specificity. Ensemble learning methods—such as bagging, 

boosting, and majority voting—combine multiple weak 

classifiers into a strong classifier, enhancing performance 

through collaborative decision-making. Feature selection is 

essential for reducing model complexity and preventing 

overfitting. Methods like forward feature selection, backward 

elimination, and recursive feature elimination fall into filter, 

wrapper, and embedded categories, respectively. Selecting non-
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redundant features improves both computational efficiency and 

model accuracy. 

Deep learning, particularly DNNs with more than 20 layers, is 

now used in tasks ranging from image recognition to genotypic 

and phenotypic classification. CNNs amplify important image 

features through convolution and pooling layers, eliminating 

the need for manual feature extraction. Activation functions 

like ReLU, sigmoid, and softmax play key roles in forming 

nonlinear layers that improve learning in deep architectures. 

Table 2 lists various open-source libraries across languages that 

support machine learning development, with Python being the 

most widely adopted . As shown in Figure 1, the adoption of 

machine learning frameworks varies by programming language, 

with Python and C++ dominating deep learning research. As 

computational power and algorithms improve, the applications 

of machine learning in biology and medicine continue to 

expand. Precision medicine, which aims to treat patients based 

on their genetic, environmental, and lifestyle data, relies 

heavily on machine learning. Analyzing vast biomedical 

datasets, extracting knowledge from unstructured records, and 

identifying patterns are tasks best handled through 

unsupervised and semi-supervised learning. Given that over 

80% of healthcare decisions are now data-driven, the 

integration of machine learning in computational biology and 

medicine is critical. 

Ultimately, machine learning serves as a decision support 

tool—whether it's disease detection, risk prediction, treatment 

planning, or drug repurposing. It supports clinicians by offering 

data-backed insights, enabling faster and more confident 

decisions. As healthcare increasingly adopts these technologies, 

ensuring accuracy, interpretability, and ethical use will remain 

paramount to maintaining trust and improving patient 

outcomes. 

 

Table 1. Roles of Deep Learning Techniques in Computational Biology 

Deep 

Learning 

Algorithm 

Medical Image Analysis Protein Structure 

Prediction 

Genomic Sequencing and 

Gene Expression Analysis 

Convolutional 

Neural 

Network 

Brain tumour segmentation, knee 

cartilage segmentation, prediction of 

semantic descriptions from medical 

images, segmentation of MR brain 

images, and coronary artery calcium 

scoring in CT images 

Prediction of protein 

order/disorder regions, 

prediction of protein 

secondary structures, 

prediction of protein 

structure properties 

— 

Sparse 

Autoencoder 

Organ detection in 4D patient data, 

segmentation of hippocampus from 

infant brains, histological 

characterization of healthy skin, and 

healing wounds 

Sequence-based 

prediction of backbone 

Cα angles and dihedrals 

— 

Deep Belief 

Network 

Segmentation of the left ventricle of the 

heart from MR data, discrimination of 

retinal-based diseases 

Prediction of protein 

disorder, prediction of 

secondary structures, 

and local backbone 

angles 

Modelling structural 

binding preferences and 

predicting binding sites of 

RNA-binding proteins, and 

predicting of splice 

junctions at the DNA level 

Deep Neural 

Network 

Brain tumour segmentation in MR 

images, prostate MR segmentation, 

gland instance segmentation 

— Gene expression inference, 

prediction of enhancers, 

prediction of splicing 

patterns in individual tissues 

and differences in splicing 

patterns across tissues 

Recurrent 

Neural 

Network 

Classification of patterns of EEG 

synchronization for seizure prediction, 

EEG-based lapse detection 

Prediction of protein 

secondary structure, 

prediction of protein 

contact map 

Prediction of miRNA 

precursor and miRNA 

targets, detection of splice 

junctions from DNA 

sequences 

  
Table 2. ML Libraries Categorized by Programming Language 

 

Language Traditional Machine Learning 

Libraries 

Deep Neural Network Machine 

Learning Libraries 

Python Scikit-learn, PyBrain, Nilearn, 

Pattern, MILK, Mixtend 

Keras, Tensorflow (written in both 

C++ and Python), Nolearn, DeePy, 

Pylearn2 
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R Caret, Boruta, GMMBoost, H2O, 

KlaR, rminer 

Darch, DeepNet 

C++ Shogun Caffe, EBLearn, Intel Deep Learning 

Framework, Tensorflow (written in 

both C++ and Python) 

Java Encog, Spark, Mahout, MALLET, 

Weka 

Deeplearning4j 

JavaScript Cluster, LDA, Node-SVM ConvnetJS 

 

 
Figure 1. Analysis of Commonly Used Deep Learning 

Frameworks 

10. Conclusions 

As this paper comes to a close, it is evident that machine 

learning, a key part of artificial intelligence, has greatly 

influenced the field of computational biology and made a 

significant impact on the healthcare system in the United States. 

Machine learning has enabled faster, more accurate, efficient, 

and affordable decision making in a variety of applications. It 

plays a vital role in disease diagnosis and prediction, medical 

imaging, drug repurposing, biomedical event analysis, and 

more. Over the years, the integration of machine learning into 

healthcare has reached an advanced stage, now contributing to 

personalized treatment strategies through precision medicine. 

In the United States, one of the most striking examples of this 

progress was during the COVID-19 pandemic, where machine 

learning tools supported patient care, treatment research, 

hospital resource management, and planning for future 

healthcare demands. These developments clearly show that 

artificial intelligence has become a foundational element in 

healthcare decision making and is now deeply embedded in the 

country’s medical systems. 
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