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This study presents a smart predictive healthcare framework tailored to support individuals in 

the United States living with chronic conditions, especially those receiving care at home. The 

framework incorporates a deep learning model that analyzes large volumes of patient data, 

including vital signs, physical activity, medication usage, and symptoms. These data are collected 

through ambient assisted living technologies. The model is part of an intelligent module that 

operates at the patient’s location to deliver accurate health status predictions and personalized 

care recommendations. The framework was tested using data from patients with chronic blood 

pressure conditions, collected every 15 minutes over one year. The proposed model achieved a 

prediction accuracy of approximately 97.6% % outperforming a standard baseline model by 

nearly 6%. Additionally, improvements in identifying critical health events were observed, with 

the F score increasing by 9% for hypertensive, 26% for hypotensive, and 10% for normotensive 

cases. These results demonstrate the model’s effectiveness in detecting early warning signs and 

enhancing the management of chronic diseases. The framework shows strong potential for 

improving healthcare access and reducing emergency risks in rural and underserved communities 

across the United States. 
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1. Introduction 

In the United States, chronic diseases such as cardiovascular 

conditions, diabetes, respiratory disorders, and various forms 

of cancer are among the primary causes of death and long-term 

disability. According to the Centers for Disease Control and 

Prevention, six in ten adults in the U.S. live with at least one 

chronic disease, and four in ten have two or more (Organization, 

2019).  These conditions are responsible for nearly 90 percent 

of the country’s healthcare expenditures. Globally, similar 

patterns are observed. The World Health Organization reported 

that by 2020, chronic illnesses accounted for approximately 80 

percent of all deaths, a notable increase from 71 percent in 2000 

(Organization, 2003). This trend is largely driven by longer life 

expectancy and an aging population, both of which are 

significant factors in the American healthcare landscape. 

The rise in life expectancy comes with an increased demand for 

long-term care. However, a shortage of healthcare 

professionals and caregivers, especially in rural regions, 

combined with the high cost of treatment, continues to put 

pressure on the system (Hassan et al., 2018). These challenges 

underline the need for intelligent healthcare solutions that can 

support early diagnosis, reduce emergency hospital visits, and 

ensure cost-effective care for chronic disease management. 

Among the most promising innovations are smart predictive 

healthcare frameworks that combine artificial intelligence, 

deep learning, and big data analytics to deliver timely, 

actionable insights from continuous health monitoring. 

To support individuals living with chronic conditions, 

particularly those receiving care at home, researchers are 

developing intelligent frameworks that integrate data from 

multiple sources. These include wearable devices, 

environmental sensors, medication logs, and health records. In 

the U.S., especially in remote or underserved areas where 

regular access to hospitals is limited, these technologies are 

proving essential (Hämäläinen & Li, 2017; SL, 2019). Such 

systems form part of what is known as Ambient Assisted Living 

environments, where patient data is continuously collected and 

transmitted for monitoring and analysis. These data streams 

contain valuable information about a person’s daily activity, 

vital signs, medication intake, and symptoms (Negra et al., 
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2016). To analyze this complex and dynamic information, 

robust computational models are required. 

Big data analytics, supported by deep learning techniques, 

allows for the detection of subtle patterns and shifts in patient 

health status (Normandeau, 2013). Unlike traditional statistical 

methods, deep learning models can manage highly variable and 

incomplete datasets and identify correlations that may be 

overlooked by human practitioners (Gope & Hwang, 2015). 

These models can classify patient health states into multiple 

categories, such as normal, alert, warning, and emergency. This 

multi-class approach is far more effective than earlier binary 

classification systems that simply indicate the presence or 

absence of a disease (Mahdavinejad et al., 2018). 

However, most existing predictive models have limitations. 

Many have been developed and tested in narrow clinical 

settings, limiting their generalizability to diverse populations. 

Others are not well suited for continuous real-time use or fail 

during data interruptions, especially in rural environments 

where internet connectivity is unreliable (Rathore et al., 2016). 

Cloud-based architectures, while offering scalable solutions, 

may leave patients vulnerable during service outages (Sun et al., 

2018). Therefore, a new approach is needed—one that is 

context-aware, adaptive, and capable of operating even under 

limited connectivity. 

This study introduces a smart predictive healthcare framework 

designed specifically for application in the United States, with 

a focus on rural and remote communities. The framework is 

built around a deep learning model that processes real-time data 

locally, reducing dependence on cloud services (Maheswar et 

al., 2019). It can operate as an edge computing system, 

analyzing data within the patient's environment. This allows for 

quick decision-making and the generation of timely alerts, even 

if internet access is unavailable. The model incorporates 

contextual information, such as the patient’s lifestyle and 

medical history, to deliver more personalized recommendations 

and diagnoses. 

The framework also features optimized cost-performance 

measures. It is designed to be scalable, meaning it can 

accommodate large patient populations, and robust enough to 

continue functioning despite sensor errors or partial data loss. 

It can adapt over time by learning from new patient data and 

refining its predictions accordingly (Collins et al., 2013). In this 

way, it supports continuous care and adjusts to changes in 

patient health status. 

Several key technologies converge in this framework, 

including mobile communication, wireless sensor networks, 

the Internet of Things, and wearable computing. Together, they 

create a seamless healthcare monitoring system capable of 

collecting, transmitting, and analyzing vast amounts of data. 

These technologies align with national initiatives in the U.S., 

such as the Department of Health and Human Services’ 

promotion of digital health innovation to improve access and 

equity in healthcare delivery (Levander & others, 2024). 

Artificial intelligence, particularly deep learning, enhances the 

capabilities of these systems by enabling predictive modeling. 

Health conditions like high blood pressure, heart disease, and 

diabetes often develop gradually, with subtle warning signs that 

can be easily missed (Adekunle et al., 2021). By analyzing 

patterns in data over time, AI can forecast the likelihood of a 

patient entering a critical state, allowing preventive measures 

to be taken in advance. This not only improves individual 

health outcomes but also reduces the financial and logistical 

burden on hospitals and emergency services. 

In addition to direct patient monitoring, the framework also 

supports clinicians. It provides them with dashboards and alerts 

that can assist in decision-making and patient prioritization. 

Predictive analytics helps providers identify patients who are at 

the highest risk, enabling early interventions that can prevent 

complications. Over time, the model becomes more accurate as 

it learns from both patient data and clinical outcomes. This 

continuous feedback loop ensures that the system evolves and 

improves its predictive power (Kibria et al., 2018). 

While many earlier models focus primarily on diagnosing 

disease, the proposed framework takes a more holistic view by 

also assessing patient behavior, environmental factors, and 

lifestyle choices. This approach is consistent with modern 

public health strategies that emphasize preventive care and 

social determinants of health. It is particularly relevant in 

American rural settings where healthcare resources are limited 

and patient education and self-management play a central role 

in chronic disease control (Smith & others, 2017). 

Looking ahead, this framework could be expanded to monitor 

other conditions such as chronic obstructive pulmonary disease, 

arthritis, or neurodegenerative disorders (Iqbal et al., 2024). 

Future iterations may also incorporate genomic data, 

behavioral assessments, and integration with national 

electronic health record systems, enhancing personalization 

and precision in care delivery. To ensure real-world 

applicability, additional clinical trials and validations using 

diverse patient data from various U.S. regions will be important. 

Data privacy, system interoperability, and compliance with 

federal regulations such as HIPAA will also be essential 

components of successful implementation (Balogun, 2025). 

In conclusion, smart predictive healthcare frameworks built on 

deep learning models offer a promising pathway toward more 

responsive, efficient, and personalized chronic disease 

management in the United States. By enabling real-time 

monitoring and early diagnosis, these systems reduce the strain 

on healthcare infrastructure, particularly in rural and 

underserved communities. As healthcare continues to evolve, 

adopting such intelligent and adaptive technologies will be vital 

for improving population health outcomes and achieving long-

term sustainability. 

2. Methods 

Deep learning models are widely used in healthcare for tasks 

such as classification and regression, depending on the specific 

medical prediction challenge (Koshimizu et al., 2020). The 

effectiveness of these models heavily depends on the choice of 

a cost or loss function that aligns with the problem at hand. In 

multiclass classification, such as identifying different stages of 

a patient’s health condition, Categorical Cross Entropy (CCE) 

is commonly used due to its suitability for evaluating 
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classification performance. In this research, a predictive deep 

learning model is developed with an optimized cost function 

based on an enhanced version of CCE. The model is tuned 

using an adaptive learning rate approach, specifically tailored 

to categorize patient health status into four classes: emergency, 

alert, warning, and normal. This model is particularly designed 

to function effectively in the U.S. healthcare context, with a 

focus on supporting remote and rural patient care through 

intelligent edge-based systems. 

 

2.1 Synthetic Data Generation 

In real-world U.S. healthcare settings, there is often a lack of 

long-term patient monitoring datasets—especially for chronic 

conditions like blood pressure disorders—collected through 

IoT-enabled devices (see Table 1) (Motwani et al., 2021). To 

address this gap, a synthetic dataset was generated for this study. 

The dataset mimics real-time health monitoring using data 

derived from three actual patients over a one-year period 

sourced from the PhysioNet MIMIC-II database (Saeed & 

others, 2011). This data was augmented and simulated using 

MySignals e-Medical IoT kits, which are compatible with 

open-source U.S. health platforms and widely used in 

telehealth applications. The synthetic dataset includes vital sign 

readings (such as blood pressure, heart rate, and respiratory 

rate), ambient room conditions like temperature and humidity, 

and patient activity data, sampled every 15 minutes (Alam & 

others, 2016). These values were contextualized and labeled 

according to standard U.S. medical protocols for response 

actions, ensuring realistic simulation and classification of 

patient states. Previous studies have validated that synthetic 

biomedical data generated in this manner is highly effective in 

replicating real patient monitoring over extended periods, 

particularly for training predictive models in chronic disease 

management. 

 
Table 1. Data set sample

Time stamp 01-01-2018 00:00 07-04-2018 22:30 07-12-2018 

03:45 

01-01-2019 04:15 

Heart rate (HR) 67 98 106 179 

Systolic BP (SBP) 110 127 163 53 

Diastolic BP (DBP) 75 88 117 106 

Respiratory rate (RR) 15 7 14 20 

Oxygen saturation (SpO2) 97 92 91 65 

Activity (Act) 6 2 3 3 

Last-activity (L_Act) 5 6 3 4 

Ambient condition (Amb) 0 1 0 2 

Medication (Med) 0 1 0 1 

Symptoms (Symp) 0 26 8 55 

Class 1 2 3 4 

2.2 Framework Description 

The architectural framework developed in this study consists of 

three layers designed to function seamlessly within home-care 

or remote monitoring setups in the United States (see Figure 1). 

The first layer, known as the Ambient Assisted Living (AAL) 

layer, is responsible for monitoring and capturing the patient’s 

vital signs and surrounding environmental data (Gupta et al., 

2025). This includes body temperature, heart rate, blood 

pressure, room temperature, and humidity levels. It is supported 

by the MySignals platform, which provides flexible 

connectivity and integration with a wide range of medical 

sensors (Saif et al., 2022). These systems are increasingly used 

in U.S. telehealth initiatives to extend care to aging populations, 

especially in under-resourced communities. 

The second layer, called the Local Intelligent Module (LIM), 

functions at the edge of the network using edge devices such as 

IoT gateways and local storage units (Xu & others, 2021). This 

layer collects, stores, and processes the data received from the 

AAL layer in both online and offline modes. It is particularly 

vital for maintaining continuity of care when internet 

connectivity is unreliable—a common issue in rural parts of the 

U.S. The LIM includes the proposed deep learning model, 

which performs real-time classification and prediction of 

patient health conditions. It also executes immediate actions 

such as alerting medical professionals or assistive caregivers 

when critical conditions are detected. 
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Figure 1. A smart predictive healthcare framework for remote patient 

monitoring 

The third layer, termed the Cloud-Oriented Module (COM), 

serves as a centralized knowledge base (Miklošík & Hvizdová, 

2012). It stores personalized patient information, medical 

histories, clinical rules, and other decision-support resources. It 

is composed of one or more secure cloud environments and 

synchronizes continuously with the LIM. Medical experts, 

caregivers, and assistive services access this layer to review 

patient updates, provide recommendations, and initiate remote 

care actions. In a typical U.S. deployment, this layer would 

comply with federal data privacy laws, including HIPAA, and 

integrate with electronic health record systems. 

2.3 Proposed Predictive Model 

The deep learning model introduced in this work operates 

within the LIM and differs from prior models that function 

solely on the cloud (see Figure 2). It is designed to perform 

local predictions using real-time data collected from the 

patient’s surrounding environment and physiological sensors. 

This design ensures that even if internet service is disrupted or 

cloud access is delayed, the system can still function effectively 

by using the latest locally stored data. This approach is essential 

for ensuring consistent healthcare in remote areas across the 

United States, where network availability can vary significantly. 

 
Figure 2. Predictive model with novel Categorical Cross Entropy 

loss function for classification of BP disorder 

The input to the model includes vital signs and AAL-generated 

data. Prior to feeding data into the model, it undergoes 

preprocessing and normalization using z-score techniques to 

ensure uniformity. Feature engineering is then applied to derive 

relevant indicators based on the patient’s activity patterns and 

environmental context. The deep learning model itself is 

composed of five layers with node configurations as follows: 

12 nodes in the input layer, followed by 24, 12, and 6 nodes in 

the hidden layers, and 4 nodes in the output layer corresponding 

to the four health states. The model training follows the 

function: 

𝑍 = ∑ 𝑊𝑖
ℎ𝑋𝑖 + 𝑏

𝑚

𝑖=1

 

where 𝑊ℎ represents the weights for layer h, and 𝑋 denotes the 

input features for each data point. Once the probability scores 

are calculated, they are processed through a novel cost 

optimization function before being finalized using a softmax 

activation function, which helps in accurate classification. 

2.4 New Cost Function 

Training deep neural networks effectively requires a well-

constructed cost function that measures the difference between 

the predicted and actual outcomes (Qi et al., 2019). Poor cost 

function choices can lead to model instability, inaccurate 

predictions, or non-converging training processes. To improve 

learning efficiency and output precision, a new cost function 

based on the Categorical Cross Entropy (CCE) method has 

been developed. 

In traditional CCE, all errors are treated equally. However, this 

model introduces an adaptive approach that adjusts the loss 

dynamically based on the variability in prediction accuracy. If 

the individual prediction error for a data point, denoted E(W), 

exceeds the average error across the dataset, a refined 

adjustment is applied using the following formulation: 

𝑧𝑖 = [𝑦𝑖 log(𝑦̂) − 𝐸(𝑊)]  𝑖𝑓 𝑦𝑖 log(𝑦̂) > 𝐸(𝑊) 

𝐸(𝑊) = − ∑ 𝑧𝑖

𝑘

𝑖=1

 

Here, yi refers to the true label probability and y is the predicted 

probability. This modification helps to better penalize larger 

misclassifications while stabilizing the gradient updates, 

allowing for more precise convergence. The Adam optimizer is 

used for training, which dynamically adjusts learning rates for 

each parameter. This adaptive behavior supports rapid 

convergence even with small learning rates, which is 

particularly valuable in real-time patient monitoring scenarios. 

This improved loss function ensures better gradient flow during 

backpropagation and leads to faster, more stable training of the 

model. A comparison between the new cost function and 

standard CCE, as shown in Figure 3 of the original study, 

illustrates how the proposed function leads to lower loss values 

and more accurate probability distributions. 
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Figure 3. Comparison of cross entropy loss and novel loss function 

 

Overall, the predictive model used in this research 

demonstrates improved classification performance under 

varied healthcare conditions, such as emergency or warning 

states. It provides reliable and timely insights into patient health 

status, even when operating independently at the edge. This is 

particularly useful in rural or underserved regions of the U.S., 

where constant connectivity cannot be guaranteed, yet timely 

medical decisions are crucial. The intelligent integration of this 

cost-optimized deep learning model with local and cloud-based 

systems ensures comprehensive chronic disease management 

and responsive care delivery across diverse healthcare 

environments. 

3. Experiments 

To evaluate the effectiveness of the proposed predictive deep 

learning model and the novel cost optimization function, a 

series of experiments were conducted. The primary objective 

of these experiments was to assess how accurately the model 

could classify and predict the actual health status of patients in 

real-time, enabling the system to generate timely alerts for 

caregivers, connect with the patient’s social support network, 

and initiate assistive services when needed. 

The experiments focused on processing an imbalanced dataset, 

which reflects the real-world distribution of various patient 

conditions. The number of instances corresponding to each 

health class—emergency, warning, alert, and normal—was 

recorded for different types of patients and is presented in Table 

2. This distribution was carefully considered to ensure the 

model's robustness across different patient profiles. 

Table 2. Class distribution for patient data 

Patient type Emergency Alert Warning Normal 

Hypertensive 

(P1) 

175 2404 23347 9307 

Hypotensive 

(P2) 

148 1627 14003 19455 

Normotensive 

(P3) 

109 1186 21421 12517 

 

For model training and evaluation, the dataset was split into 

training and testing subsets, with 70 percent used for training 

and the remaining 30 percent for testing. This split helped 

simulate a practical deployment scenario and provided 

sufficient data for both learning and performance validation. 

The experiments were executed on a standard computing setup 

equipped with an Intel Core i3 processor (5th Generation), 8 

GB of RAM, and a 4-core architecture, running on a 64-bit 

Windows 10 operating system. To implement and test the 

model, widely used and compatible machine learning and deep 

learning libraries were utilized, including Scikit-learn, Keras, 

and Google TensorFlow. These tools supported the model 

development, mathematical computations, and visualization 

tasks essential for analyzing results. 

4. Results and Discussions 

To assess whether the proposed predictive deep learning model 

can deliver reliable recommendations for remotely monitored 

patients, its performance was compared against two established 

models: a standard neural network and the Naive Bayes 

classifier used in the IHCAM-PUSH system. The evaluation 

was conducted across three types of patients with varying 

health profiles to ensure the robustness of the model. 

Several standard metrics were used to evaluate and compare 

model performance. These included classification accuracy, 

precision, sensitivity (also known as recall), and the F-score. 

Classification accuracy measures the overall correctness of the 

model’s predictions and is commonly used as a baseline metric. 

As shown in Figure 4, the proposed model outperforms the 

benchmark models in terms of classification accuracy across all 

patient categories. Precision reflects the proportion of true 

positive predictions among all predicted positives, while 

sensitivity indicates the proportion of actual positive cases 

correctly identified by the model. The F-score, a weighted 

average of precision and recall, provides a more balanced view 

of the model’s performance, especially in imbalanced datasets. 

 
Figure 4. Comparison of accuracy for patient P1, P2, and P3 

Figure 5 for both the average F-score and the F-score specific 

to emergency cases for all three models. The proposed model 

consistently achieves higher F-scores, with an average of 

approximately 0.92 across patient types and an emergency-

class F-score exceeding 0.90. These values indicate a strong 

ability to detect critical conditions, even in the presence of 

significant class imbalance. 
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Figure 5. Comparison of F-score values 

As reported in Table 3, the predictive model achieved an overall 

accuracy of approximately 97.6 percent, outperforming the 

comparison models. The results demonstrate that the model not 

only identifies normal and non-critical conditions with high 

accuracy but also excels in predicting emergency and warning 

states, which are essential for timely intervention. Overall, the 

findings confirm that the proposed model provides a 

dependable and accurate classification of patient health status, 

making it well-suited for deployment in remote monitoring 

scenarios within U.S. healthcare settings. 

Table 3. Comparison of precision (emergency) and recall 

(emergency) of novel DL (proposed) model with benchmark neural 

network (NN) 

Mode

l 

P1 

Precisio

n 

P1 

Recal

l 

P2 

Precisio

n 

P2 

Recal

l 

P3 

Precisio

n 

P3 

Recal

l 

NN 1.00 0.80 1.00 0.86 1.00 0.79 

Nove

l DL 

Mode

l 

1.00 0.83 1.00 0.84 1.00 0.89 

 

5. Conclusions and Future Recommendation 

The healthcare monitoring framework proposed in this study is 

designed to support the real-time supervision of patients in the 

United States who are living with chronic conditions such as 

blood pressure disorders and diabetes. By continuously 

monitoring vital signs and contextual data—including daily 

activities and ambient environmental conditions—the system 

enables caregivers, clinicians, and healthcare facilities to 

deliver more responsive and informed care to patients residing 

at home. This approach aligns with current U.S. healthcare 

goals of expanding telehealth services, reducing hospital 

readmissions, and improving chronic disease management 

through personalized, technology-driven interventions. 

The experimental results demonstrate that the framework 

consistently performs well across various health status 

classifications, including emergency, alert, warning, and 

normal states. Unlike traditional models that rely solely on 

cloud-based processing, this system is capable of making local 

decisions with high accuracy, ensuring uninterrupted service 

even in environments with limited or inconsistent internet 

connectivity—a common concern in many rural parts of the 

country. This local processing capability is particularly 

valuable for enabling immediate response in critical situations. 

What sets this framework apart is its ability to integrate both 

personalized and general medical rules, making it robust across 

diverse patient profiles. Its offline functionality ensures fault 

tolerance, allowing it to operate effectively in the absence of 

cloud services while maintaining strong learning performance. 

The model is also context-aware, adjusting its 

recommendations based on a combination of patient behaviors 

and environmental data, which enhances the relevance and 

precision of its alerts. Built using a high-performing deep 

learning architecture, the system handles large volumes of 

unstructured and imbalanced health data efficiently and 

accurately. 

From a technical perspective, the framework demonstrates 

scalability and adaptability. It is capable of managing extensive 

health data streams through the power of deep learning while 

remaining compatible with a wide range of modern 

technologies such as cloud computing, machine learning, and 

Internet of Things (IoT) devices. Its adaptive nature ensures 

that it can evolve with ongoing advances in health technology 

and data analytics, supporting long-term deployment in diverse 

care settings across the United States. 

Looking forward, there are several promising directions for 

expanding the framework. Future versions may integrate 

Convolutional Neural Networks (CNNs) or other advanced 

deep learning models to enhance pattern recognition and 

classification capabilities. The framework's context-aware 

design also makes it a strong candidate for expansion into the 

monitoring of other chronic illnesses, such as cancer and 

neurological disorders, where continuous observation is critical. 

Additionally, incorporating cloud-based social networking 

services could provide an added layer of patient engagement 

and community support. Further research will focus on 

evaluating the framework's quality of service, energy efficiency, 

and performance metrics in cloud-based environments to 

ensure it meets the rigorous standards expected in modern 

healthcare delivery across the United States. 
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