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This study presents a smart predictive healthcare framework tailored to support individuals in
the United States living with chronic conditions, especially those receiving care at home. The
framework incorporates a deep learning model that analyzes large volumes of patient data,
including vital signs, physical activity, medication usage, and symptoms. These data are collected
through ambient assisted living technologies. The model is part of an intelligent module that
operates at the patient’s location to deliver accurate health status predictions and personalized
care recommendations. The framework was tested using data from patients with chronic blood
pressure conditions, collected every 15 minutes over one year. The proposed model achieved a
prediction accuracy of approximately 97.6% % outperforming a standard baseline model by
nearly 6%. Additionally, improvements in identifying critical health events were observed, with
the F score increasing by 9% for hypertensive, 26% for hypotensive, and 10% for normotensive
cases. These results demonstrate the model’s effectiveness in detecting early warning signs and
enhancing the management of chronic diseases. The framework shows strong potential for
improving healthcare access and reducing emergency risks in rural and underserved communities
across the United States.
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1. Introduction

underline the need for intelligent healthcare solutions that can
support early diagnosis, reduce emergency hospital visits, and

In the United States, chronic diseases such as cardiovascular
conditions, diabetes, respiratory disorders, and various forms
of cancer are among the primary causes of death and long-term
disability. According to the Centers for Disease Control and
Prevention, six in ten adults in the U.S. live with at least one

chronic disease, and four in ten have two or more (Organization,

2019). These conditions are responsible for nearly 90 percent
of the country’s healthcare expenditures. Globally, similar
patterns are observed. The World Health Organization reported
that by 2020, chronic illnesses accounted for approximately 80
percent of all deaths, a notable increase from 71 percent in 2000
(Organization, 2003). This trend is largely driven by longer life
expectancy and an aging population, both of which are
significant factors in the American healthcare landscape.

The rise in life expectancy comes with an increased demand for
long-term care. However, a shortage of healthcare
professionals and caregivers, especially in rural regions,
combined with the high cost of treatment, continues to put
pressure on the system (Hassan et al., 2018). These challenges

ensure cost-effective care for chronic disease management.
Among the most promising innovations are smart predictive
healthcare frameworks that combine artificial intelligence,
deep learning, and big data analytics to deliver timely,
actionable insights from continuous health monitoring.

To support individuals living with chronic conditions,
particularly those receiving care at home, researchers are
developing intelligent frameworks that integrate data from
multiple sources. These include wearable devices,
environmental sensors, medication logs, and health records. In
the U.S., especially in remote or underserved areas where
regular access to hospitals is limited, these technologies are
proving essential (Hdmaildinen & Li, 2017; SL, 2019). Such
systems form part of what is known as Ambient Assisted Living
environments, where patient data is continuously collected and
transmitted for monitoring and analysis. These data streams
contain valuable information about a person’s daily activity,
vital signs, medication intake, and symptoms (Negra et al.,
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2016). To analyze this complex and dynamic information,
robust computational models are required.

Big data analytics, supported by deep learning techniques,
allows for the detection of subtle patterns and shifts in patient
health status (Normandeau, 2013). Unlike traditional statistical
methods, deep learning models can manage highly variable and
incomplete datasets and identify correlations that may be
overlooked by human practitioners (Gope & Hwang, 2015).
These models can classify patient health states into multiple
categories, such as normal, alert, warning, and emergency. This
multi-class approach is far more effective than earlier binary
classification systems that simply indicate the presence or
absence of a disease (Mahdavinejad et al., 2018).

However, most existing predictive models have limitations.
Many have been developed and tested in narrow clinical
settings, limiting their generalizability to diverse populations.
Others are not well suited for continuous real-time use or fail
during data interruptions, especially in rural environments
where internet connectivity is unreliable (Rathore et al., 2016).
Cloud-based architectures, while offering scalable solutions,
may leave patients vulnerable during service outages (Sun et al.,
2018). Therefore, a new approach is needed—one that is
context-aware, adaptive, and capable of operating even under
limited connectivity.

This study introduces a smart predictive healthcare framework
designed specifically for application in the United States, with
a focus on rural and remote communities. The framework is
built around a deep learning model that processes real-time data
locally, reducing dependence on cloud services (Maheswar et
al., 2019). It can operate as an edge computing system,
analyzing data within the patient's environment. This allows for
quick decision-making and the generation of timely alerts, even
if internet access is unavailable. The model incorporates
contextual information, such as the patient’s lifestyle and
medical history, to deliver more personalized recommendations
and diagnoses.

The framework also features optimized cost-performance
measures. It is designed to be scalable, meaning it can
accommodate large patient populations, and robust enough to
continue functioning despite sensor errors or partial data loss.
It can adapt over time by learning from new patient data and
refining its predictions accordingly (Collins et al., 2013). In this
way, it supports continuous care and adjusts to changes in
patient health status.

Several key technologies converge in this framework,
including mobile communication, wireless sensor networks,
the Internet of Things, and wearable computing. Together, they
create a seamless healthcare monitoring system capable of
collecting, transmitting, and analyzing vast amounts of data.
These technologies align with national initiatives in the U.S.,
such as the Department of Health and Human Services’
promotion of digital health innovation to improve access and
equity in healthcare delivery (Levander & others, 2024).

Artificial intelligence, particularly deep learning, enhances the
capabilities of these systems by enabling predictive modeling.
Health conditions like high blood pressure, heart disease, and
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diabetes often develop gradually, with subtle warning signs that
can be easily missed (Adekunle et al., 2021). By analyzing
patterns in data over time, Al can forecast the likelihood of a
patient entering a critical state, allowing preventive measures
to be taken in advance. This not only improves individual
health outcomes but also reduces the financial and logistical
burden on hospitals and emergency services.

In addition to direct patient monitoring, the framework also
supports clinicians. It provides them with dashboards and alerts
that can assist in decision-making and patient prioritization.
Predictive analytics helps providers identify patients who are at
the highest risk, enabling early interventions that can prevent
complications. Over time, the model becomes more accurate as
it learns from both patient data and clinical outcomes. This
continuous feedback loop ensures that the system evolves and
improves its predictive power (Kibria et al., 2018).

While many earlier models focus primarily on diagnosing
disease, the proposed framework takes a more holistic view by
also assessing patient behavior, environmental factors, and
lifestyle choices. This approach is consistent with modern
public health strategies that emphasize preventive care and
social determinants of health. It is particularly relevant in
American rural settings where healthcare resources are limited
and patient education and self-management play a central role
in chronic disease control (Smith & others, 2017).

Looking ahead, this framework could be expanded to monitor
other conditions such as chronic obstructive pulmonary disease,
arthritis, or neurodegenerative disorders (Igbal et al., 2024).
Future iterations may also incorporate genomic data,
behavioral assessments, and integration with national
electronic health record systems, enhancing personalization
and precision in care delivery. To ensure real-world
applicability, additional clinical trials and validations using
diverse patient data from various U.S. regions will be important.
Data privacy, system interoperability, and compliance with
federal regulations such as HIPAA will also be essential
components of successful implementation (Balogun, 2025).

In conclusion, smart predictive healthcare frameworks built on
deep learning models offer a promising pathway toward more
responsive, efficient, and personalized chronic disease
management in the United States. By enabling real-time
monitoring and early diagnosis, these systems reduce the strain
on healthcare infrastructure, particularly in rural and
underserved communities. As healthcare continues to evolve,
adopting such intelligent and adaptive technologies will be vital
for improving population health outcomes and achieving long-
term sustainability.

2. Methods

Deep learning models are widely used in healthcare for tasks
such as classification and regression, depending on the specific
medical prediction challenge (Koshimizu et al., 2020). The
effectiveness of these models heavily depends on the choice of
a cost or loss function that aligns with the problem at hand. In
multiclass classification, such as identifying different stages of
a patient’s health condition, Categorical Cross Entropy (CCE)
is commonly used due to its suitability for evaluating
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classification performance. In this research, a predictive deep
learning model is developed with an optimized cost function
based on an enhanced version of CCE. The model is tuned
using an adaptive learning rate approach, specifically tailored
to categorize patient health status into four classes: emergency,
alert, warning, and normal. This model is particularly designed
to function effectively in the U.S. healthcare context, with a
focus on supporting remote and rural patient care through
intelligent edge-based systems.

2.1 Synthetic Data Generation

In real-world U.S. healthcare settings, there is often a lack of
long-term patient monitoring datasets—especially for chronic
conditions like blood pressure disorders—collected through
IoT-enabled devices (see Table 1) (Motwani et al., 2021). To
address this gap, a synthetic dataset was generated for this study.
The dataset mimics real-time health monitoring using data
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derived from three actual patients over a one-year period
sourced from the PhysioNet MIMIC-II database (Saced &
others, 2011). This data was augmented and simulated using
MySignals e-Medical IoT kits, which are compatible with
open-source U.S. health platforms and widely used in
telehealth applications. The synthetic dataset includes vital sign
readings (such as blood pressure, heart rate, and respiratory
rate), ambient room conditions like temperature and humidity,
and patient activity data, sampled every 15 minutes (Alam &
others, 2016). These values were contextualized and labeled
according to standard U.S. medical protocols for response
actions, ensuring realistic simulation and classification of
patient states. Previous studies have validated that synthetic
biomedical data generated in this manner is highly effective in
replicating real patient monitoring over extended periods,
particularly for training predictive models in chronic disease
management.

Table 1. Data set sample

Time stamp 01-01-2018 00:00 07-04-2018 22:30 07-12-2018 01-01-2019 04:15
03:45
Heart rate (HR) 67 98 106 179
Systolic BP (SBP) 110 127 163 53
Diastolic BP (DBP) 75 88 117 106
Respiratory rate (RR) 15 7 14 20
Oxygen saturation (SpO2) 97 92 91 65
Activity (Act) 6 2 3 3
Last-activity (L_Act) 5 6 3 4
Ambient condition (Amb) 0 1 0 2
Medication (Med) 0 1 0 1
Symptoms (Symp) 0 26 8 55
Class 1 2 3 4

2.2 Framework Description

The architectural framework developed in this study consists of
three layers designed to function seamlessly within home-care
or remote monitoring setups in the United States (see Figure 1).
The first layer, known as the Ambient Assisted Living (AAL)
layer, is responsible for monitoring and capturing the patient’s
vital signs and surrounding environmental data (Gupta et al.,
2025). This includes body temperature, heart rate, blood
pressure, room temperature, and humidity levels. It is supported
by the MySignals platform, which provides flexible
connectivity and integration with a wide range of medical
sensors (Saif et al., 2022). These systems are increasingly used
in U.S. telehealth initiatives to extend care to aging populations,
especially in under-resourced communities.

The second layer, called the Local Intelligent Module (LIM),
functions at the edge of the network using edge devices such as
IoT gateways and local storage units (Xu & others, 2021). This
layer collects, stores, and processes the data received from the
AAL layer in both online and offline modes. It is particularly
vital for maintaining continuity of care when internet
connectivity is unreliable—a common issue in rural parts of the
U.S. The LIM includes the proposed deep learning model,
which performs real-time classification and prediction of

patient health conditions. It also executes immediate actions
such as alerting medical professionals or assistive caregivers
when critical conditions are detected.
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Figure 1. A smart predictive healthcare framework for remote patient
monitoring

The third layer, termed the Cloud-Oriented Module (COM),
serves as a centralized knowledge base (Miklosik & Hvizdova,
2012). It stores personalized patient information, medical
histories, clinical rules, and other decision-support resources. It
is composed of one or more secure cloud environments and
synchronizes continuously with the LIM. Medical experts,
caregivers, and assistive services access this layer to review
patient updates, provide recommendations, and initiate remote
care actions. In a typical U.S. deployment, this layer would
comply with federal data privacy laws, including HIPAA, and
integrate with electronic health record systems.

2.3 Proposed Predictive Model

The deep learning model introduced in this work operates
within the LIM and differs from prior models that function
solely on the cloud (see Figure 2). It is designed to perform
local predictions using real-time data collected from the
patient’s surrounding environment and physiological sensors.
This design ensures that even if internet service is disrupted or
cloud access is delayed, the system can still function effectively
by using the latest locally stored data. This approach is essential
for ensuring consistent healthcare in remote areas across the

United States, where network availability can vary significantly.
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Figure 2. Predictive model with novel Categorical Cross Entropy
loss function for classification of BP disorder

The input to the model includes vital signs and AAL-generated
data. Prior to feeding data into the model, it undergoes
preprocessing and normalization using z-score techniques to
ensure uniformity. Feature engineering is then applied to derive
relevant indicators based on the patient’s activity patterns and
environmental context. The deep learning model itself is
composed of five layers with node configurations as follows:
12 nodes in the input layer, followed by 24, 12, and 6 nodes in
the hidden layers, and 4 nodes in the output layer corresponding
to the four health states. The model training follows the
function:
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m
Z= Z Whx;+b
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where W" represents the weights for layer 4, and X denotes the
input features for each data point. Once the probability scores
are calculated, they are processed through a novel cost
optimization function before being finalized using a softmax
activation function, which helps in accurate classification.

2.4 New Cost Function

Training deep neural networks effectively requires a well-
constructed cost function that measures the difference between
the predicted and actual outcomes (Qi et al., 2019). Poor cost
function choices can lead to model instability, inaccurate
predictions, or non-converging training processes. To improve
learning efficiency and output precision, a new cost function
based on the Categorical Cross Entropy (CCE) method has
been developed.

In traditional CCE, all errors are treated equally. However, this
model introduces an adaptive approach that adjusts the loss
dynamically based on the variability in prediction accuracy. If
the individual prediction error for a data point, denoted E(W),
exceeds the average error across the dataset, a refined
adjustment is applied using the following formulation:

z; = [y;log(®) — EW)] if y;log(¥) > E(W)

k

E(W) = —Zzi

i=1

Here, y; refers to the true label probability and y is the predicted
probability. This modification helps to better penalize larger
misclassifications while stabilizing the gradient updates,
allowing for more precise convergence. The Adam optimizer is
used for training, which dynamically adjusts learning rates for
each parameter. This adaptive behavior supports rapid
convergence even with small learning rates, which is
particularly valuable in real-time patient monitoring scenarios.

This improved loss function ensures better gradient flow during
backpropagation and leads to faster, more stable training of the
model. A comparison between the new cost function and
standard CCE, as shown in Figure 3 of the original study,
illustrates how the proposed function leads to lower loss values
and more accurate probability distributions.
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Overall, the predictive model wused in this research
demonstrates improved classification performance under
varied healthcare conditions, such as emergency or warning
states. It provides reliable and timely insights into patient health
status, even when operating independently at the edge. This is
particularly useful in rural or underserved regions of the U.S.,
where constant connectivity cannot be guaranteed, yet timely
medical decisions are crucial. The intelligent integration of this
cost-optimized deep learning model with local and cloud-based
systems ensures comprehensive chronic disease management
and responsive care delivery across diverse healthcare
environments.

3. Experiments

To evaluate the effectiveness of the proposed predictive deep
learning model and the novel cost optimization function, a
series of experiments were conducted. The primary objective
of these experiments was to assess how accurately the model
could classify and predict the actual health status of patients in
real-time, enabling the system to generate timely alerts for
caregivers, connect with the patient’s social support network,
and initiate assistive services when needed.

The experiments focused on processing an imbalanced dataset,
which reflects the real-world distribution of various patient
conditions. The number of instances corresponding to each
health class—emergency, warning, alert, and normal—was
recorded for different types of patients and is presented in Table
2. This distribution was carefully considered to ensure the
model's robustness across different patient profiles.

Table 2. Class distribution for patient data

Patient type Emergency  Alert Warning Normal
Hypertensive 175 2404 23347 9307
(P1)

Hypotensive 148 1627 14003 19455
(P2)

Normotensive 109 1186 21421 12517
(P3)

For model training and evaluation, the dataset was split into
training and testing subsets, with 70 percent used for training
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and the remaining 30 percent for testing. This split helped
simulate a practical deployment scenario and provided
sufficient data for both learning and performance validation.

The experiments were executed on a standard computing setup
equipped with an Intel Core i3 processor (5th Generation), 8
GB of RAM, and a 4-core architecture, running on a 64-bit
Windows 10 operating system. To implement and test the
model, widely used and compatible machine learning and deep
learning libraries were utilized, including Scikit-learn, Keras,
and Google TensorFlow. These tools supported the model
development, mathematical computations, and visualization
tasks essential for analyzing results.

4. Results and Discussions

To assess whether the proposed predictive deep learning model
can deliver reliable recommendations for remotely monitored
patients, its performance was compared against two established
models: a standard neural network and the Naive Bayes
classifier used in the IHCAM-PUSH system. The evaluation
was conducted across three types of patients with varying
health profiles to ensure the robustness of the model.

Several standard metrics were used to evaluate and compare
model performance. These included classification accuracy,
precision, sensitivity (also known as recall), and the F-score.
Classification accuracy measures the overall correctness of the
model’s predictions and is commonly used as a baseline metric.
As shown in Figure 4, the proposed model outperforms the
benchmark models in terms of classification accuracy across all
patient categories. Precision reflects the proportion of true
positive predictions among all predicted positives, while
sensitivity indicates the proportion of actual positive cases
correctly identified by the model. The F-score, a weighted
average of precision and recall, provides a more balanced view
of the model’s performance, especially in imbalanced datasets.
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Figure 4. Comparison of accuracy for patient P1, P2, and P3

Figure 5 for both the average F-score and the F-score specific
to emergency cases for all three models. The proposed model
consistently achieves higher F-scores, with an average of
approximately 0.92 across patient types and an emergency-
class F-score exceeding 0.90. These values indicate a strong
ability to detect critical conditions, even in the presence of
significant class imbalance.
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As reported in Table 3, the predictive model achieved an overall
accuracy of approximately 97.6 percent, outperforming the
comparison models. The results demonstrate that the model not
only identifies normal and non-critical conditions with high
accuracy but also excels in predicting emergency and warning
states, which are essential for timely intervention. Overall, the
findings confirm that the proposed model provides a
dependable and accurate classification of patient health status,
making it well-suited for deployment in remote monitoring
scenarios within U.S. healthcare settings.

Table 3. Comparison of precision (emergency) and recall

(emergency) of novel DL (proposed) model with benchmark neural

network (NN)

Mode Pl P1 P2 P2 P3 P3
1 Precisio Recal Precisio Recal Precisio Recal
n 1 n 1 n 1
NN 1.00 0.80 1.00 0.86 1.00 0.79
Nove 1.00 0.83 1.00 0.84 1.00 0.89
1 DL
Mode

5. Conclusions and Future Recommendation

The healthcare monitoring framework proposed in this study is
designed to support the real-time supervision of patients in the
United States who are living with chronic conditions such as
blood pressure disorders and diabetes. By continuously
monitoring vital signs and contextual data—including daily
activities and ambient environmental conditions—the system
enables caregivers, clinicians, and healthcare facilities to
deliver more responsive and informed care to patients residing
at home. This approach aligns with current U.S. healthcare
goals of expanding telehealth services, reducing hospital
readmissions, and improving chronic disease management
through personalized, technology-driven interventions.

The experimental results demonstrate that the framework
consistently performs well across various health status
classifications, including emergency, alert, warning, and
normal states. Unlike traditional models that rely solely on
cloud-based processing, this system is capable of making local
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decisions with high accuracy, ensuring uninterrupted service
even in environments with limited or inconsistent internet
connectivity—a common concern in many rural parts of the
country. This local processing capability is particularly
valuable for enabling immediate response in critical situations.

What sets this framework apart is its ability to integrate both
personalized and general medical rules, making it robust across
diverse patient profiles. Its offline functionality ensures fault
tolerance, allowing it to operate effectively in the absence of
cloud services while maintaining strong learning performance.
The model is also context-aware, adjusting its
recommendations based on a combination of patient behaviors
and environmental data, which enhances the relevance and
precision of its alerts. Built using a high-performing deep
learning architecture, the system handles large volumes of
unstructured and imbalanced health data efficiently and
accurately.

From a technical perspective, the framework demonstrates
scalability and adaptability. It is capable of managing extensive
health data streams through the power of deep learning while
remaining compatible with a wide range of modern
technologies such as cloud computing, machine learning, and
Internet of Things (IoT) devices. Its adaptive nature ensures
that it can evolve with ongoing advances in health technology
and data analytics, supporting long-term deployment in diverse
care settings across the United States.

Looking forward, there are several promising directions for
expanding the framework. Future versions may integrate
Convolutional Neural Networks (CNNs) or other advanced
deep learning models to enhance pattern recognition and
classification capabilities. The framework's context-aware
design also makes it a strong candidate for expansion into the
monitoring of other chronic illnesses, such as cancer and
neurological disorders, where continuous observation is critical.
Additionally, incorporating cloud-based social networking
services could provide an added layer of patient engagement
and community support. Further research will focus on
evaluating the framework's quality of service, energy efficiency,
and performance metrics in cloud-based environments to
ensure it meets the rigorous standards expected in modern
healthcare delivery across the United States.
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