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ARTICLE INFO ABSTRACT

In the United States, food waste remains a significant challenge, with approximately one-third
of all food produced for human consumption being wasted. This not only exacerbates issues
related to food insecurity but also leads to economic inefficiency and environmental damage.
Artificial Intelligence (Al) offers promising solutions to address these concerns by improving
predictions of food spoilage and optimizing supply chain management. Al technologies,
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including machine learning models, predictive analytics, and advanced algorithms, can
accurately forecast spoilage, thereby reducing waste. Key innovations include systems for early
detection of spoilage indicators, dynamic algorithms that adjust storage conditions, and
predictive models for waste forecasting based on real-time environmental data. Case studies,
such as those from Shelf Engine and Afresh, show notable improvements, with a 14.8% reduction
in food waste per store and a decrease of 26,705 tons of CO2 emissions. IKEA also achieved a
30% reduction in kitchen food waste within a year using Al-powered monitoring systems.
However, challenges remain in data collection, model training, and integrating Al with existing
food management systems. These include issues with data quality, compatibility with legacy
systems, and regulatory hurdles. The paper concludes by offering recommendations for future
research, advocating for collaboration across disciplines to create standardized data protocols,
enhance real-time monitoring, and address the ethical concerns surrounding Al adoption in the
food sector. By pursuing these strategies, Al can play a pivotal role in minimizing food waste in
the U.S. and globally.
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1. Introduction

The World Food Programme (WFP) reports that
approximately one-third of food produced globally for
human consumption is wasted, which is enough to feed
two billion people [1]. This statistic is especially
concerning, considering that 30% of the world's
population faces moderate to severe food insecurity, and
over 900 million people suffer from severe food
shortages [2]. Food waste is not only a moral dilemma
but also creates significant economic and environmental
problems. In the United States, food waste contributes
to the instability of the food supply chain by affecting
market demand and supply dynamics, which can drive
up prices, particularly during periods of scarcity.
Furthermore, food waste exacerbates social inequalities
as wealthier populations tend to waste more food,
widening the gap between different socioeconomic
classes. The environmental impact is also immense, as

food waste decomposes in landfills, emitting harmful
pollutants and contributing to greenhouse gas emissions.
Addressing food waste requires effective solutions, and
Artificial Intelligence (AI) has emerged as a key tool in
mitigating this problem.

Al offers transformative potential in reducing food
waste, primarily by predicting food spoilage before it
occurs [3]. Through the application of machine learning
(ML) models, predictive analytics, and advanced
algorithms, Al can enhance the accuracy of spoilage
predictions and help optimize supply chain management.
These technologies enable real-time monitoring of
storage conditions, improving the overall efficiency of
food systems and contributing to the sustainability of
the global food supply chain. By predicting food
spoilage and adjusting supply chain operations
accordingly, Al has the potential to significantly reduce
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waste, which ultimately benefits both the environment
and the economy. This approach is particularly
important as food waste continues to be a challenge in
the United States, where the country alone wastes over
40 million tons of food every year, valued at around
$218 billion [4]. As food waste directly correlates with
the underutilization of resources such as land, water, and
labor, it is crucial to adopt Al to optimize these resources
more effectively.

The financial impact of food waste is staggering.
Globally, about 1.3 billion tons of food are wasted every
year, resulting in an estimated financial loss of US$1
trillion. In the United States, food waste is a major issue
at every stage of the supply chain, from production and
transportation to retail and consumption [5]. According
to Table 1, a detailed summary of food waste
distribution across various stages, Chauhan, et al. [6]
identify that around 24% of food waste occurs during
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production and post-harvest stages. This is primarily
attributed to inefficient agricultural practices, poor
harvesting methods, and inadequate storage facilities.
Another 17% of waste arises during transportation,
often caused by improper handling and unfavorable
environmental conditions, such as temperature
fluctuations. At the retail level, food waste amounts to
20%, typically due to overstocking, stringent cosmetic
standards, and the tendency to discard imperfect
produce. However, the largest share of food waste—
35%—occurs at the consumption stage, driven by
consumer behaviors such as over-purchasing,
neglecting proper storage, and not using food before its
expiration. These figures reflect the complexity of food
waste, which occurs at multiple stages across the food
supply chain, and the economic impact is significant not
only in terms of lost food but also in the associated costs
of healthcare, waste management, and environmental
degradation.

Table 1: Overview of food waste by stage in the supply chain (Chauhan et al., 2021; Programme, 2020; Xue et al., 2017)

Stage Percentage of Total Waste Key Factors Contributing to
Waste
Production 24% Inefficient farming techniques,
natural disasters
Post-Harvest 24% Poor storage facilities, lack of
proper infrastructure
Transportation and Retail 17% Inadequate transportation methods,
delays, exposure to unsuitable
environments
Consumption 35% Overstocking, cosmetic standards,

improper handling, over-purchasing,
lack of planning, poor consumer
habits

The environmental impact of food waste is far-reaching.
The resources used to produce wasted food, including
water, land, and labor, are squandered, making food
waste an inefficient use of critical resources.
Additionally, when food waste decomposes in landfills,
it produces methane, a potent greenhouse gas.
According to the Food and Agriculture Organization
(FAO), food waste generates roughly 3.3 gigatons of
carbon dioxide annually, contributing to climate change
[4]. In the U.S., the environmental impact is particularly
severe, with over 35 million tons of food wasted each
year, contributing to not only greenhouse gas emissions
but also the depletion of valuable resources such as
water and soil. These environmental costs underline the
urgent need for strategic interventions to mitigate food
waste and improve the sustainability of the food supply
chain [5].

Al can play a pivotal role in addressing food waste by
improving food spoilage prediction and enabling better
resource management [6]. Recent studies have shown
that Al technologies such as machine learning models
and predictive analytics are already being successfully
implemented in various sectors of the food supply chain
to predict spoilage and reduce waste [7, 8]. For example,
Al-driven platforms like Shelf Engine and Afresh have

been used to reduce food waste at grocery stores by
optimizing inventory management and predicting which
items are likely to spoil. In fact, Al-powered solutions
have led to a 14.8% reduction in food waste per store,
with a corresponding reduction of 26,705 tons of CO2
emissions. Additionally, IKEA, a global leader in home
furnishings, achieved a 30% reduction in kitchen food
waste within just one year by using Al-based monitoring
systems. These real-world examples highlight the
potential of Al in reducing food waste and improving
sustainability within the food sector.

Despite these successes, integrating Al into existing
food management systems poses several challenges.
One of the primary obstacles is the quality of data used
to train machine learning models. Incomplete,
inconsistent, or inaccurate data can result in poor
predictions and undermine the effectiveness of Al
solutions. Additionally, integrating Al into existing food
management systems often requires significant
investment in technology and infrastructure, which can
be a barrier for small and medium-sized enterprises
(SMESs) in the food sector [9]. Compatibility with legacy
systems and regulatory barriers also present challenges
that need to be addressed for Al to be widely adopted in
the food industry. Standardized data protocols, real-time
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monitoring systems, and the development of
interoperable technologies are essential for overcoming
these barriers and ensuring the effective deployment of
Al in food waste reduction.

The study investigates the potential of Al to improve
economic and environmental sustainability by
enhancing spoilage prediction and reducing food waste
throughout the U.S. food supply chain. It examines how
Al can be used to predict food spoilage, adjust storage
conditions, and optimize transportation routes. In
addition, the paper explores the role of Al in improving
decision-making within the food sector by integrating
real-time data from various sources, such as sensors, IoT
devices, and blockchain technologies. By using Al to
dynamically adapt to changing conditions, including
fluctuating food demand, variable storage environments,
and interactions among stakeholders, the paper proposes
a novel Al-driven framework for food spoilage

2. Methodology

2.1. Research Approach

A thorough literature review was carried out to build a
strong foundation for understanding the role of
Artificial Intelligence (Al) in reducing food waste. To
ensure a comprehensive and detailed exploration of the
topic, several databases were consulted. These included
PubMed, which offers research on food systems;
Google Scholar, which provides access to a diverse
range of scholarly articles, including grey literature; and
Scopus, known for its extensive interdisciplinary
research coverage. The review focused on studies and
articles that examine the application of Al technologies
to minimize food waste in the United States, addressing
key issues like food spoilage, supply chain
inefficiencies, and sustainability.

2.2. Search Strategy

To refine the search results and improve the relevance
of the gathered research, Boolean operators (AND, OR,
NOT) were employed. Key search terms included "Al
in food systems," "food spoilage prediction," "machine
learning in food waste management," "supply chain
optimization," and "Al-driven food sustainability." This
search strategy was designed to ensure that the results
encompassed a broad spectrum of studies, with a
particular focus on those that addressed the application
of Al in the context of food waste reduction in the
United States.

2.3. Eligibility Criteria

The selection of articles was based on specific inclusion
and exclusion criteria to ensure the relevance and
quality of the research. The inclusion criteria were as
follows: studies must be directly related to the
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detection and waste reduction. This framework
incorporates machine learning, IoT, and blockchain to
enhance the efficiency of food systems and minimize
waste. In doing so, Al presents a pathway for more
sustainable and equitable food systems in the U.S. and
globally.

In conclusion, Al offers significant potential in
mitigating food waste, improving food spoilage
predictions, and enhancing the sustainability of the food
supply chain. While challenges remain in terms of data
quality and system integration, the successful
implementation of Al-driven solutions in various
industries proves their potential to address the food
waste crisis. By adopting Al technologies across the
food supply chain, the U.S. and other nations can reduce
food waste, improve resource efficiency, and mitigate
environmental harm, contributing to a more sustainable
and equitable future.

Authors should follow these guidelines in writing their
papers. The paper must be customized to A4 size. The
body text should be aligned in a double column to a
“justified” style, and line spacing must be single

application of Al in reducing food waste, published in
peer-reviewed journals, and provide empirical data or
well-supported theoretical frameworks. Articles that
lacked methodological rigor or did not focus on Al-
driven food waste reduction were excluded. The review
primarily concentrated on research published between
2020 and 2024 to capture the most recent developments
in Al technology and its applications in the U.S. food
industry. This timeframe allowed for the inclusion of the
latest studies, particularly those up to May 2024,
ensuring that the paper’s analysis reflected the current
state of research in the field.

3. Al in predicting food spoilage

The integration of AI along with other Industry 4.0
technologies, such as big data and the Internet of Things
(IoT), is poised to transform the food supply chain
significantly. As noted by Romanello and Veglio [4],
these technologies are expected to improve food quality
and safety, promote environmental sustainability, and
enhance operational efficiency throughout every stage
of the food supply chain. Al finds application across
various phases, including crop monitoring and early
pest detection during production, storage monitoring
post-harvest, route optimization for transportation,
inventory management in retail, and expiry tracking
during consumption [5, 6]. This broad application of Al
not only addresses quality and efficiency but also plays
a pivotal role in reducing food spoilage and waste,
providing a potential solution to a longstanding global
issue. Figure 1 illustrates how Al and other technologies
are deployed at each stage of the food supply chain to
optimize efficiency and minimize waste.
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Production
+ Crop monitoring

+ Pathogen detection
+ Microorganism detection

Post-harvest
+ Storage environment monitoring
+ Processing equipment sanitation monitoring
+ Microorganism detection

Retail

+ Inventory management
+ Support retail food safety training

Consumption
+ Identify unsafe foods from online review
comments
+ Expiry tracking

Transportation
» Routine optimization
+ Temperature control during transportation
+ Cold chain break analysis

Fig.1. Al application in the food supply chain

Al technologies are crucial at different stages of the
food supply chain to ensure food safety and operational
efficiency. In the production phase, Al is utilized for
crop monitoring, pathogen detection in agriculture, and
identifying microorganisms in poultry farms. These
applications aim to enhance the quality and yield of
agricultural products by preventing disease and pest
damage(Kamilaris & Prenafeta-Boldu, 2018). For
example, deep learning models have been effectively
used for detecting crop diseases, significantly
improving early identification and prevention methods
(Ferentinos, 2018). Additionally, Al-driven spectral
imaging techniques have shown high accuracy in
detecting pathogens in poultry farms, thus strengthening
biosecurity measures (Park, 2015). During the post-
harvest stage, Al helps monitor storage conditions and
ensure the cleanliness of processing equipment,
reducing  spoilage and contamination losses
(Pathmanaban et al., 2023). Studies indicate that Al-
integrated [oT systems facilitate real-time monitoring of
storage environments, allowing for predictions and
prevention of spoilage (Afreen & Bajwa, 2021;
Siddiqua et al., 2022).

In the transportation phase, Al applications such as
route optimization, temperature control, and cold-chain
break analysis ensure that perishable goods are
transported efficiently and remain fresh, particularly for
temperature-sensitive products (Kale & Patil, 2020).
Research highlights that Al-powered predictive
analytics improve cold-chain logistics by minimizing
temperature fluctuations, which can compromise the
quality of food products. At the retail stage, Al is used
to streamline inventory management and enhance food
safety compliance by offering training systems for staff.
Al-based demand forecasting techniques have been
particularly effective in optimizing inventory, thus
reducing food waste in bakeries. Furthermore, Al-

driven training platforms help improve food safety
practices by providing interactive learning modules for
food handlers (Dhal & Kar, 2025).

Finally, at the consumption stage, Al plays a vital role
in identifying unsafe or expired foods by analyzing
online reviews and tracking expiration dates, helping
consumers avoid spoiled or unsafe products. Sentiment
analysis of online reviews has proven to be a useful tool
in detecting foodborne illness outbreaks, enabling
timely interventions (Sadilek et al., 2018). In addition,
Al-powered smart labeling systems assist consumers in
tracking product freshness and expiration dates,
significantly reducing household food waste. Overall,
Figure 1 underscores the interconnected role of
advanced technologies in optimizing each stage of the
food supply chain, with the primary goal of reducing
waste and ensuring food safety from production to
consumption. These technological advancements not
only aim to boost efficiency at each stage but also
contribute to sustainability by reducing the
environmental impact of food waste and spoilage.

4. Al for early detection

Food spoilage occurs due to a variety of factors,
including the presence of pathogens, chemical and
biochemical reactions, physical damage, and enzymatic
activity. These factors affect the pH, nutritional content,
flavor, texture, color, and water activity of food,
ultimately making it unsafe or wundesirable for
consumption [15]. Artificial Intelligence (AI) and
machine learning technologies offer promising
solutions to reduce food waste by accurately predicting
spoilage before it happens. These machine learning
models are trained on large datasets that include food
characteristics, optimal storage conditions, and
indicators of spoilage [16]. These advanced models not
only estimate the shelf life of food products but also
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analyze environmental factors such as temperature,
humidity, and ventilation to recommend the best storage
conditions, thereby preventing premature spoilage.
Additionally, Al plays a crucial role in microbiology by
enabling early pathogen detection, enhancing food
safety, and reducing the risks associated with foodborne
illnesses [17].

Moreover, Al and big data technologies, characterized
by the volume, speed, and variety of information they
process, are critical in identifying early warning signs of
food safety risks during production. For example,
harmful algal blooms in seafood or fungal growth in
crops, which could lead to the formation of mycotoxins,
can be detected early with Al. Big data tools like
machine learning algorithms, cloud computing, and
predictive analytics process vast amounts of real-time
data from sources such as IoT sensors, satellite imagery,
and microbiological analysis. These technologies help
identify = contamination patterns, optimize food
distribution, and enhance risk assessment in food safety.
This enables the food industry to monitor and assess
product quality and safety in real-time, ensuring both
product integrity and consumer health [18]. In the
United States, Al-enabled systems have been
successfully applied in practical scenarios, such as the
U.S. Food and Drug Administration (FDA) using Al to
detect problematic seafood imports and vegetable
growers utilizing Al to manage crop risks based on
environmental factors [19, 20]. Al not only improves
food safety but also contributes to reducing food waste
by providing more precise management of food quality
and safety risks throughout the entire food supply chain.

5. Al for optimizing food storage and
distribution

Al technology plays a vital role in enhancing food
preservation by predicting and preventing spoilage,
which aligns with sustainable agricultural practices.
One notable example is a machine learning model
developed by Sonwani et al. [21], which assesses
whether fruits and vegetables are stored under optimal
conditions. By analyzing images of produce at varying
temperature and humidity levels using convolutional
neural networks (CNNs), the model predicts the shelf
life of these items. This not only supports the
development of intelligent inventory systems that
reduce waste but also allows for real-time adjustments
to storage conditions to maintain freshness. The system
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uses image recognition algorithms to detect subtle signs
of spoilage, such as changes in color and texture, and
integrates environmental sensor data to improve
predictions regarding produce deterioration. Moreover,
Al’s predictive capabilities are also utilized to forecast
consumer demand patterns, improving the alignment of
food production with actual consumption needs, thereby
reducing the risk of overproduction [22]. Recurrent
neural networks (RNNs), such as Long Short-Term
Memory (LSTM) models, can identify seasonal
fluctuations and predict future demand, further
optimizing production and reducing waste [23]. These
technologies ensure that proper storage conditions are
maintained across the supply chain by adjusting factors
such as temperature and humidity in real time.
Additionally, Al facilitates efficient food redistribution
to areas of high demand, such as shelters, through
logistics optimization algorithms that prioritize
deliveries based on freshness and need.

Al is also crucial in managing microbiological risks
during storage, transportation, and consumption by
analyzing environmental conditions and detecting
patterns that could lead to foodborne illnesses.
Predictive models, including support vector machines
(SVMs) or random forests, can flag potential risks by
correlating storage conditions with microbiological data,
enabling early identification of contamination or
spoilage risks. These Al-driven systems not only
enhance food safety but also help reduce waste caused
by contamination or spoilage.

In addition to improving food safety, Al technologies
offer significant environmental and economic
advantages. For example, Bhatia et al. [24] report that
the use of Al in food management has notably reduced
CO2 emissions, with one case showing a reduction of
26,705 tons annually. Economically, Al-driven tools
such as demand prediction models and dynamic pricing
algorithms have proven to be effective in the grocery
sector. These tools help reduce costs related to unsold
inventory and waste disposal while enhancing
profitability. According to the Pacific Coast Food Waste
Commitment, the adoption of Al technologies for
inventory management has led to an average profit
increase of 14.8% per store (see Table 2) [25]. These
advancements highlight the diverse benefits of Al,
underscoring its role in both improving environmental
sustainability and increasing economic efficiency
within the food industry.

Table 2: Financial and environmental impact of Al in food waste reduction

Impact Type Quantitative Benefit

Reference

Case Study

Reduction in CO2 Reduction of 26,705 tons (Nuetal.,,2024) Case Study involving Al

Emissions annually

implementation in retail grocery

Cost Savings Decrease in costs (Ciccullo et al.,, Grocery retail sector through Al

associated  with  food 2022)

disposal  and  unsold
inventory

Increased Profitability
profits by 14.8% per store

forecasting tools

The average increase in (Nuetal,2024) Al-enhanced inventory management

in multiple stores
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6. Challenges in implementing Al for food
spoilage prediction

Implementing Al to predict food spoilage presents
significant challenges, primarily due to the need for
diverse, high-quality data required to train accurate
predictive models. Collecting data on various variables
such as temperature, humidity, storage conditions, and
microbial activity is essential, but obtaining extensive
and representative datasets proves difficult. As
highlighted by Anwar et al. [32], the variability in food
types, spoilage processes, and storage conditions makes
data collection complex. Each food type has distinct
characteristics and degradation patterns, necessitating
custom datasets for accurate modeling. Furthermore,
ensuring the consistency and reliability of the data
collected remains a challenge. Data can come from

JSAE, 1(2), pp. 1-XY.

various sources, including sensors, manual observations,
and historical records, each with varying levels of
accuracy. Any errors, biases, or missing entries in these
datasets can significantly impair the performance of Al
models, leading to inaccurate predictions and unreliable
outcomes [33]. The lack of universally accepted
protocols for data collection across the food industry
further complicates efforts to standardize data, an
essential step for developing robust Al applications.
These challenges highlight the complexity of deploying
Al for food spoilage prediction and underscore the need
for efforts to improve data quality and standardization
in this field. Table 3 outlines the key challenges and
potential solutions for implementing Al in food spoilage
prediction.

Table 3: key challenges and solutions in implementing Al for food spoilage prediction

Category Challenge Description References Solutions

Data Collection Difficult to collect (Anwar et al., 2023) Develop universal
comprehensive data on protocols for data
temperature, humidity, collection (e.g., FoodON)
microbial activity across to improve data
food types. consistency.

Data Variability Different food types (Anwar etal., 2023) Use active learning and
require tailored datasets, synthetic data to fill gaps
making data collection and reduce bias.
complex.

Data Quality Issues Inaccurate or missing data (Wang et al., 2022) Implement federated

from sources like sensors
or records affects Al
predictions.

Data Standardization
for data collection
complicates consistency.

Data  Accessibility & Ethical and legal barriers (Taheri Gorji et al., 2023)  Use

Lack of universal protocols  (Wang et al., 2022)

learning to protect data
privacy while training

models.

Standardize data formats
for international
collaboration.

fairness-aware

Sharing hinder  data  sharing, algorithms to monitor and
especially sensitive correct biases in deployed
personal data. Al models.

Bias in Al Models Skewed or incomplete (Gonzélez-Sendino et al., Continuous model

Integration & Operations

datasets result in biased
predictions.

Difficulty integrating Al
with existing food

2024)

(Patel et al., 2024)

monitoring is needed to
detect and correct
emerging biases.

Adapt workflows and train
staff for Al adoption.

management systems.

Financial Constraints High initial costs and (Rejeb et al., 2022)

maintenance expenses
create financial barriers.
Regulatory &  Legal Lack of
Barriers frameworks for Al in food
safety standards.
Ethical & Fairness Issues
societal biases if trained on
biased data.

regulatory  (Thakkar et al., 2023)

Financial barriers can be
addressed through
collaborative efforts.
Harmonize data protocols
and establish regulatory
frameworks.

Al models may perpetuate (Thomas et al., 2022) Develop  fairness-aware

algorithms to ensure Al
equity in food systems.

Al's integration into food spoilage prediction also faces
barriers related to data accessibility and sharing. Ethical
concerns regarding data privacy, proprietary interests,
and adherence to regulatory standards often impede the
free exchange of data resources. The reliance on large

and varied datasets sourced from different devices, such
as sensors, cameras, and smartphones, introduces
additional complexities related to data security and the
potential exposure of sensitive personal information.
Furthermore,  collaborative = projects  frequently
encounter difficulties in forming data-sharing
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agreements, navigating legal frameworks, and
reconciling concerns over data ownership and
intellectual property rights. To overcome these obstacles,
strategies such as data standardization, the promotion of
open data platforms, and fostering partnerships among
stakeholders are essential. Standardizing data formats,
ontologies, and metadata is crucial to ensure
consistency and interoperability across diverse sources.
Open data initiatives that prioritize transparency while
protecting privacy through anonymization and
encryption are also vital. Additionally, collaboration
between industry stakeholders, academic researchers,
and regulatory authorities is necessary to facilitate data
sharing, establish best practices, and address legal and
ethical concerns.

A promising solution to these challenges is the use of
decentralized, privacy-preserving technology, as
demonstrated by Taheri Gorji, et al. [35]. This approach
utilizes federated learning alongside fluorescence
imaging technology and deep learning models to detect
invisible residues on food preparation equipment,
classifying them as clean or contaminated. This model
operates without sharing data across clients or storing it
on a centralized server, thus enhancing data privacy and
addressing one of the critical issues in deploying Al for
food safety applications.

Bias in AI models is another issue that has gained
attention as Al and machine learning become more
prevalent in food spoilage prediction. Gonzélez-
Sendino, et al. [36] emphasize that biases can arise at
various stages of the Al development process, from data
collection to model training and deployment. During
data collection, biases may emerge if the dataset is
incomplete, non-representative, or if there is an
inconsistent interpretation of labels by different
annotators, leading to skewed outputs. Similarly, biases
can occur during model training if the data is
unbalanced or if the model is not equipped to handle
diverse inputs. To mitigate these biases, it is crucial to
continuously monitor and test Al models with a variety
of inputs after deployment. Thomas et al. [40] note that
these biases can perpetuate social inequalities if the data
reinforces existing prejudices. For example, Al models
may display discriminatory  patterns  against
marginalized groups if training data is biased or lacks
diversity. Addressing these biases is essential to ensure
fairness and equity in Al applications, particularly in
food safety.

Figure 2 illustrates the various sources of bias in Al
deployment within food systems. Data-related biases,
such as incomplete or skewed datasets, can arise from
an over-reliance on historical sales data that fails to
account for emerging consumption trends, leading to
inaccurate demand forecasting. Algorithmic biases may
emerge if Al models overemphasize certain spoilage
factors, such as temperature fluctuations, while
neglecting others like microbial growth, reducing
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predictive accuracy. Operational and human biases
further exacerbate inefficiencies when decision-makers
either over-rely on or dismiss Al recommendations
based on subjective judgment. Moreover, external
factors, such as regulatory inconsistencies and
economic disparities, hinder equitable access to Al
technologies, particularly for small-scale retailers who
may not have the resources to implement sophisticated
predictive analytics. Larger grocery chains can leverage
Al-driven demand forecasting to optimize inventory
management, while smaller vendors may experience
higher food waste due to less accurate stock adjustments.
Addressing these biases requires a comprehensive
approach that integrates diverse datasets, enhances
algorithmic transparency, and ensures equal access to Al
technologies across the food supply chain.

Human/Operational

Data Binses Algorithmic Binses s External Factors
[ | [Incomplete or Feature Selection || | Decision-Making Regulatory and
Skewed Datasets Bias Bias Ethical Binses
- Historical Bias Model Training Bias Impl ion Bias (Efl“"::';'l":f‘
L Data Collection Bias

Fig. 2. Sources of bias in Al deployment for food
systems [41]

To overcome the challenges in Al-driven food spoilage
prediction, targeted strategies are needed to enhance
data standardization, reduce bias, and improve
integration. Establishing universal data collection
protocols is crucial for ensuring consistency and
comparability across datasets. Standardized ontologies,
such as the FoodON framework [42], can improve
interoperability and data quality. Techniques like active
learning and synthetic data generation can help fill gaps
in real-world datasets, reducing bias and improving
model generalization. To address ethical concerns
related to data sharing, federated learning, which allows
Al models to be trained across decentralized devices
without sharing raw data, has been successfully used in
medical imaging and can be adapted for food safety.
Furthermore, continuous monitoring of Al models using
adversarial testing and fairness-aware algorithms can
help identify and correct biases that emerge post-
deployment. Collaboration  between  industry
stakeholders, regulatory agencies, and technology
developers will also foster the adoption of best practices
and regulatory frameworks that balance innovation with
ethical considerations [43]. Implementing these
solutions will enhance the accuracy and fairness of Al
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models, supporting a more sustainable and equitable
food supply chain.

Achieving high accuracy and reliability in AI models is
essential for their effective application in predicting
food spoilage. This requires comprehensive training
datasets that cover a wide range of food types, storage
conditions, and spoilage factors. Jarray, et al. [44]
emphasize the importance of improving data collection
methods, refining feature selection techniques, and
advancing algorithmic approaches to improve
prediction accuracy. Additionally, real-world validation
of Al models is essential to ensure their robustness and
applicability across various operational environments.
This validation process involves rigorous testing in real-
world settings to evaluate model performance, identify
limitations, and adjust algorithms accordingly Hassoun,
et al. [43].

Integrating Al into existing food management and
supply chain systems also presents several challenges.
These include technological issues related to
compatibility with legacy systems, concerns about
interoperability, and the need for specialized
infrastructure to support Al implementations [37].
Operational challenges arise from the need to adapt
current workflows and processes to incorporate Al
insights, which requires organizational commitment,
workforce training, and change management strategies.
Financial barriers also exist, including high initial
investment costs, ongoing maintenance, and uncertain
returns on investment [46]. Additionally, the regulatory
framework has yet to fully address the integration of Al
technologies, as many regulatory agencies lack the
necessary scientific knowledge and assessment
practices to manage Al-driven food safety systems [39].
To facilitate international collaboration and data
exchange, researchers suggest harmonizing data
formats and establishing cooperative platforms and
databases, which could help mitigate some of these
challenges. These efforts are essential to fully harness
AT’s potential to improve food safety and reduce waste
effectively.

7. Case Studies

The adoption of Al technologies in the grocery retail
sector is becoming a key strategy for reducing food
waste, improving operational efficiency, and
minimizing environmental impact. Al systems employ
advanced algorithms to analyze large datasets, including
sales records, historical trends, and external factors like
weather patterns and seasonal fluctuations, to accurately
forecast consumer demand. This ability allows retailers
to optimize their inventory levels, preventing over-
ordering and minimizing the occurrence of unsold or
spoiled products. As a result, food waste and shrinkage
are reduced, which contributes to both operational
efficiency and profitability. According to the Pacific
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Coast Food Waste Commitment [30], avoiding the
disposal of unsold inventory and reducing shrinkage not
only addresses food waste but also enhances
profitability, demonstrating AI's value in the retail sector.

In addition to improving inventory management, Al also
automates labor-intensive processes such as ordering
and restocking, further boosting efficiency and reducing
operational costs. The successful implementation of Al
solutions in pilot programs and across multiple stores
proves the scalability and effectiveness of these
technologies in the grocery retail industry.

Several case studies demonstrate the concrete impact of
Al in reducing food waste in the U.S. For example,
retailers using Al-powered solutions from Shelf Engine
and Afresh reported an average reduction of 14.8% in
food waste per store. This led to lower shrinkage, higher
profits, and improved labor efficiency, all of which
offset the costs of implementing Al [30]. Furthermore,
these initiatives helped prevent 26,705 tons of CO2
emissions from reaching landfills, showcasing the
significant environmental benefits of Al-driven
solutions. Another example comes from Winnow
Solutions, which partnered with large grocery chains
such as Walmart and Whole Foods to deploy Al-
powered waste monitoring systems that helped reduce
food waste by 20% within just six months. These efforts
also prevented significant carbon emissions,
underscoring the environmental impact.

Another example is IKEA, which used Al to monitor
and analyze food waste in its kitchens, resulting in a
30% reduction in food waste within a year [41].
Furthermore, a project by Kroger, one of the largest
grocery chains in the U.S., utilized AI and machine
learning to track inventory and reduce food waste. By
integrating Al into its inventory management system,
Kroger was able to predict demand more accurately,
reducing overstock and spoilage by 25% over a year
[45]. This project not only led to cost savings but also
aligned with Kroger's sustainability goals by reducing
the waste sent to landfills.

These case studies highlight the potential of Al to
predict spoilage, optimize inventory management, and
foster sustainable practices, significantly reducing food
waste across various retail environments in the U.S. By
leveraging Al technologies, U.S. retailers are not only
boosting their profitability but also contributing to more
sustainable and environmentally friendly operations.

8. Al for food spoilage prediction

Building on the successful case studies and applications
of Al in reducing food waste, it is essential to delve into
the ML models that drive food spoilage prediction and
inventory management. The choice of AI model
depends on various factors, including the nature of the
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data, the complexity of the environment, and the
specific goals of the food system. Understanding the
strengths, limitations, and practical applications of these
models is key to advancing Al's role in addressing food
waste.

Supervised learning models, such as Random Forest
(RF), Support Vector Machines (SVM), and Artificial
Neural Networks (ANN), form the backbone of food
spoilage prediction. These models learn from labeled
historical data to identify spoilage patterns based on
factors like temperature, humidity, and microbial
conditions. For example, RF excels in handling diverse
and heterogeneous datasets, making it ideal for different
food products. However, RF’s reliance on large labeled
datasets and its struggle with high-dimensional data can
pose challenges in real-world applications. SVMs,
known for their binary classification abilities, can
distinguish between fresh and spoiled food by
identifying an optimal hyperplane to separate the two
classes. While they are effective for smaller datasets,
SVMs can be computationally intensive when applied
to large-scale systems. To overcome these hurdles,
researchers have sought to improve the efficiency of
SVMs. Pouladzadeh, et al. [46] explored SVMs for food
recognition applications, which are integral to tasks like
calorie estimation. Meanwhile, ANN models, especially
deep learning networks, have shown potential in
detecting subtle spoilage signs from complex data, such
as hyperspectral images, but they require large datasets
and come with high computational costs.

On the other hand, unsupervised learning models, such
as K-Means Clustering and Principal Component
Analysis (PCA), offer unique advantages in anomaly
detection and spoilage prediction. These models do not
require labeled data and can identify outliers in
environmental conditions that may cause spoilage. K-
Means clustering, for instance, helps segment food
products based on spoilage characteristics, improving
inventory management [66]. However, it struggles with
non-spherical data distributions. PCA, useful for
dimensionality reduction, helps improve computational
efficiency but may overlook critical spoilage indicators
if important features are discarded.

Deep learning models, including Convolutional Neural
Networks (CNN) and Recurrent Neural Networks
(RNN), have revolutionized spoilage prediction by
analyzing image and time-series data. CNNs are
particularly effective for visual assessments of food
quality, such as detecting microbial contamination in
fresh produce using hyperspectral imaging, enabling
early spoilage detection. RNNs, especially Long Short-
Term Memory (LSTM) networks, excel at analyzing
time-dependent data, such as temperature and humidity
trends in cold storage, providing high temporal accuracy
in spoilage predictions. While these models have
significant advantages, they require large labeled
datasets and substantial computational resources,
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making them challenging to implement for smaller-
scale operations.

Reinforcement learning (RL) models, such as Deep Q-
Networks (DQN), are used to optimize inventory
management by dynamically adjusting ordering
patterns based on spoilage risks and demand
fluctuations. These models can reduce food waste while
maximizing profitability by continuously learning the
best strategies for decision-making. Hybrid approaches,
which combine Al models with IoT sensors, offer real-
time monitoring and adaptive control over food storage
conditions. For example, integrating LSTM with IoT-
based temperature sensors significantly improves
spoilage prediction accuracy by accounting for real-
time environmental changes. However, RL models
require substantial training time and ongoing real-world
feedback, making scalability difficult in some cases.

Despite the promising results seen in case studies, there
are several challenges and limitations in using Al to
reduce food waste. A major hurdle is the reliance on
large, high-quality datasets, which may not be available
for smaller businesses with limited historical data. The
initial costs associated with Al systems, including
computational and maintenance expenses, can also be
prohibitive for many. While Al technologies can scale
well in large operations, their complexity and resource
demands may make them difficult to implement in
smaller environments. Additionally, Al systems often
rely on real-time data inputs, such as sensor readings,
which can be prone to inaccuracies or malfunctions.
Issues with model selection, computational efficiency,
and potential job displacement further complicate the
widespread adoption of Al in the food sector. As such,
while Al offers immense potential, these challenges
need to be addressed for more widespread and effective
deployment in the food industry.

9. Future Recommendation

Future research in Al and food spoilage prediction is set
to evolve through several integrated and strategic
avenues aimed at improving the effectiveness and
practical applications of these technologies.

One of the key areas of focus will be technological
advancements. Researchers will concentrate on refining
Al algorithms to enhance the accuracy and reliability of
food spoilage predictions. This includes developing
more sophisticated deep learning models that can
analyze complex datasets to identify subtle signs of
spoilage with greater precision.

Integration with emerging technologies will also play a
crucial role in advancing Al applications. The
combination of Al with technologies such as the Internet
of Things (IoT) and blockchain is essential for
improving predictions. IoT sensors provide continuous
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monitoring of environmental factors and food quality
metrics, feeding real-time data into Al models, thereby
enabling more accurate spoilage predictions.
Blockchain technology, on the other hand, can improve
traceability and transparency across the food supply
chain, making it easier to track food products and
intervene promptly to prevent spoilage. This
transparency helps Al systems to process data with
greater precision by tracking key variables like
temperature, humidity, and transit times, which are
critical for spoilage prediction. By ensuring the integrity
of data throughout the supply chain, blockchain helps
Al models make more reliable predictions, reducing
waste by preventing overstocking and mishandling of
perishable goods.

Another promising research direction is multi-modal
data fusion. Integrating various data types—such as
sensory, chemical, and microbiological data—into Al
models can greatly enhance predictive accuracy and
provide a deeper understanding of the factors
contributing to food spoilage. This approach allows
researchers to capture the full range of influences on
spoilage, providing a more holistic view of the issue.

Real-time monitoring and adaptive control are also
critical for advancing Al systems. Al models equipped
with real-time monitoring capabilities can dynamically
adjust storage conditions, packaging materials, and
distribution logistics based on predictive insights. This
proactive approach helps to minimize waste and ensure
food safety and quality, improving overall food
management.

Finally, collaborative research initiatives will accelerate
innovation in AI for food spoilage prediction.
Collaboration between food scientists, data scientists,
engineers, and industry stakeholders will enable the
pooling of diverse expertise and resources. These
interdisciplinary efforts will help overcome complex
challenges and develop practical, sustainable solutions
for managing food waste.

By focusing on these areas, researchers and industry
professionals can significantly enhance the role of Al in
reducing food waste, which will have far-reaching
positive effects on both the economy and the
environment.

10. Conclusions

Al has become a game-changer in the fight against food
waste and spoilage, providing innovative solutions to
improve food safety and sustainability across the global
supply chain. By leveraging advanced algorithms and
real-time data analytics, Al allows for the early
detection of spoilage, enhances inventory management,
and significantly reduces waste through more precise
demand forecasting. These advantages are not just
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theoretical; companies such as IKEA, Shelf Engine, and
Afresh have already achieved notable reductions in food
waste per store, resulting in substantial environmental
benefits, including the prevention of thousands of tons
of CO2 emissions. These real-world successes
demonstrate Al’s practical effectiveness and its
potential to drive large-scale improvements in food
systems.

The wunique contribution of this study is its
demonstration of Al's ability to deliver tangible,
measurable changes in both operational efficiency and
environmental outcomes. The findings offer compelling
evidence that Al can transform food waste management,
providing solutions that not only reduce waste but also
foster a more secure and sustainable global food supply.
Optimizing resources, minimizing waste, and lowering
carbon footprints are essential steps in meeting the
growing global food demands while mitigating
environmental harm.

However, to fully unlock AI’s potential, several
challenges must be addressed, including issues related
to data quality, model training, and the integration of Al
with existing systems. Overcoming these obstacles
requires collaboration among technologists, researchers,
policymakers, and industry stakeholders. The
combination of Al with complementary technologies
such as IoT and big data presents further opportunities
to create a smarter, more efficient food system. Future
research should focus on overcoming barriers such as
data privacy concerns, model biases, and regulatory
compliance, ensuring that AI’s transformative potential
is fully realized. By promoting interdisciplinary
collaboration and standardizing data protocols, we can
develop a more sustainable, efficient, and resilient food
supply chain that benefits both people and the planet for
generations to come.
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