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Early identification is essential for successful intervention in Alzheimer's disease, a 

progressive neurodegenerative disease that is a major contributor to cognitive loss in 

older persons. Alzheimer's disease is difficult to detect in its early stages using 

conventional diagnostic techniques like neuroimaging and cognitive tests. This study 

investigates the use of deep learning models specifically, Convolutional Neural 

Networks, or CNNs to neuroimaging data to diagnose Alzheimer's disease early and 

the prognostic ability of Alzheimer-signature MRI biomarkers in detecting the change 

in cognitively normal persons into those with Alzheimer's disease (AD) dementia. 

Based on secondary data taken from the literature, this study assesses the performance 

of many deep learning architectures, such as Dense Net models, Graph Convolutional 

Networks (GCNs), and 3D CNNs as well as biomarkers. According to our research, 

CNN-based models hold great potential for precise Alzheimer's disease identification, 

particularly when they use three-dimensional imaging data. CNNs are the most 

commonly used architecture, according to a comparative study of 22 reviewed 

research; other models, such as GCNs and fine-tuned VGG19, exhibit noteworthy 

performance. The clinical applicability of such deep learning techniques and their 

capacity to improve patient outcomes and diagnostic precision in Alzheimer's care are 

also covered in this research. The study ends with suggestions for additional research, 

with an emphasis on addressing dataset variability limits and optimizing the model. 
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1. Introduction 

Alzheimer's disease (AD) is a long-term, irreversible brain 

illness for which there is now no effective treatment. Available 

medications, however, can halt its progression. Thus, the 

prevention and management of AD's progression depend 

heavily on early detection (Helaly et al., 2022). Alzheimer's 

disease (AD) is the most prevalent cause of dementia, 

accounting for 60–80% of cases (Jo et al., 2019; Singh et al., 

2020). Mild cognitive impairment (MCI) is the initial symptom 

of AD, a neurological kind of dementia, which progressively 

worsens. It damages brain cells, impairs thinking and memory, 

and makes it difficult to complete basic tasks (Altinkaya et al., 

2020; Wen et al., 2020). Consequently, AD is a neurological 

brain illness that progresses and has many different aspects. AD 

is more likely to develop in people with MCI than in others 

(Better, 2023; Yang et al., 2020). Since AD starts two decades 

or more before symptoms are noticed, people only notice its 

consequences after years of brain changes. According to 

Alzheimer's Disease International (ADI), dementia affects over 

50 million individuals globally. This number is expected to rise 

to 152 million by 2050, meaning that one in three individuals 

will suffer from dementia (Helaly et al., 2022).  

The biochemical process leading to AD may start over 20 years 

before symptoms show up (López-Cuenca et al., 2023). 

Amyloid peptide deposition and tau protein accumulation and 

phosphorylation surrounding neurons are the foundations of the 

current understanding of AD etiology, which results in 

neurodegeneration and ultimately brain atrophy (Hampel et al., 

2018; Scheltens et al., 2016; Vogt et al., 2023). Age, genetic 

propensity (van der Lee et al., 2018), Down syndrome (Fortea 

et al., 2020), brain traumas (Brett et al., 2021), and 

cardiorespiratory fitness (Letnes et al., 2023) are among the 

factors linked to AD.  

By 2030, the estimated yearly expense associated with 

dementia is likely to quadruple to $1 trillion (Adelina, 2019). 

The percentage of individuals afflicted by AD varies by age. In 

2020, there were around 5.8 million Americans 65 and older 
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who had AD. Additionally, it is anticipated to reach 13.8 million 

by 2050 (Better, 2023). 

The most advanced machine learning technique is deep 

learning. High hopes that deep learning, or artificial 

intelligence (AI), will revolutionize healthcare have been raised 

by the success of deep learning in numerous pattern recognition 

applications (Bhatt et al., 2021). Over the past few decades, 

neuroimaging has provided an intriguing non-invasive view 

into the human brain. Scientists from a variety of disciplines, 

including medical, engineering, mathematics, physics, 

statistics, computer science, and psychology, have been drawn 

to this interdisciplinary topic. In recent years, there has been a 

growing interest in the single-subject prediction of brain 

illnesses using neuroimaging. To accurately classify patients 

with a range of mental and neurodegenerative disorders, 

including schizophrenia and Alzheimer's disease, hundreds of 

studies have been conducted using machine learning techniques 

in conjunction with a variety of neuroimaging modalities, 

including structural, functional, and diffusion MRI 

(Arbabshirani et al., 2017). Non-invasively studying different 

parts of the human brain with previously unheard-of accuracy 

is now feasible because to imaging modalities like magnetic 

resonance imaging (MRI) and magnetoencephalography 

(MEG) as well as more conventional techniques like 

electroencephalography (EEG). The advantages of MRI-

related techniques including diffusion MRI (dMRI), functional 

MRI (fMRI), and structural MRI (sMRI) include the provision 

of comprehensive functional and structural links maps as well 

as localized spatial data regarding the structure and function of 

the brain.  

Numerous machine learning techniques based on high 

dimensional data taken from different neuroimaging 

biomarkers, for as brain MRI and PET, have been proposed to 

help with the diagnosis of AD. These machine learning 

techniques must not only automatically distinguish AD subjects 

from normal control (NC) subjects, but also forecast the 

likelihood that MCI subjects will progress to AD. As a result, 

MCI cases may be classified as either MCI converters (cMCI) 

or MCI non-converters (ncMCI), contingent on the risk of 

progression. Consequently, it is possible to naturally model the 

early diagnosis of AD as a multiclass classification problem 

(Liu et al., 2014). 

Alzheimer's disease (AD) is a slowly developing illness in 

which pathophysiological changes that can be identified in vivo 

by biomarkers occur years or even decades before overt clinical 

symptoms appear. There are five AD biomarkers that are 

widely utilized in clinical trials and have been sufficiently 

verified to be included in clinical diagnostic criteria. Amyloid-

β plaque biomarkers and tau-related neurodegeneration 

biomarkers are the two types of AD biomarkers that are 

currently available. Two of the five are analytes of 

cerebrospinal fluid, and three are imaging measurements (Jack 

& Holtzman, 2013). Cerebrospinal fluid (CSF) is currently 

analyzed using recognized biomarkers such as tau protein, 

amyloid beta protein, and phospho-tau expression levels to 

confirm the existence of dementia. In addition to having close 

association with the brain and spinal cord, CSF is recognized 

to function as a good source of biomarkers since it offers a 

comprehensive picture of the brain's diverse biochemical and 

metabolic characteristics (Sharma & Singh, 2016). 

Researchers worldwide have unanimously determined the 

following criteria for a potential powerful biomarker for 

Alzheimer's disease (Blennow, 2005; Gu et al., 2012; 

Sunderland et al., 2004) those are: represent the aging of the 

brain, explain the pathophysiological mechanisms in the brain, 

any changes in pharmacology should be represented, extremely 

particular and delicate, results that can be replicated over time, 

cut-off levels that are obvious and have at least twofold changes.  

Recent research has focused on employing time-to-event 

analysis techniques to forecast when AD dementia will 

progress over the follow-up period (Barnes et al., 2014). 

Predicting the progression of MCI individuals to AD dementia 

has been done using clinical and imaging-based parameters at 

baseline and their longitudinal change trajectory, with 

encouraging results. Only particular clinical measures or basic 

imaging characteristics, which may be less discriminative for 

the prognosis, have been studied (Li et al., 2019). The main 

objective of this research is to evaluate and compare deep-

learning models for their precision and accuracy in the early 

detection of Alzheimer’s disease and efficiency of biomarkers 

for early detection of Alzheimer’s Disease.  

2. Literature Review 

Kraepelin described a unique set of cases with extremely severe 

cell transformations in the eighth edition of Clinical Psychiatry: 

A Text-book for Students and Physicians in 1910. These cases 

include an excessive number of plaques, the death of roughly 

one-third of the cerebral cortex, which is replaced by particular 

bursts of coloured neurofibrils, and the most severe kind of 

malnutrition. The term "Alzheimer's disease" was originally 

used by Kraepelin, who described the disorder at a period when 

the clinical definition was not yet apparent (Vatanabe et al., 

2020).  

The risk of Alzheimer's disease (AD), a neurodegenerative 

condition characterized by memory loss and cognitive decline, 

is expected to increase worldwide (Better, 2023). Since it offers 

chances for treatment that can delay progression, early 

recognition of AD is essential. The brains of those with AD and 

those in good health are contrasted in Fig. 1. 
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Fig. 1.  Normal Brain Vs AD Brain. 

In the United States, AD is currently the sixth most common 

cause of death. According to recent estimates, the ailment may 

perhaps be the third most common cause of mortality for older 

adults, after cancer and heart disease (Jin et al., 2019). 

Undoubtedly, it is crucial to anticipate AD development in its 

early phases and stop the disease from getting worse. Fig. 2 

shows current and projected numbers of new cases of Alzheimer's 

disease in the US through 2050 . 

 

Fig. 2. Current and projected numbers of new cases of Alzheimer's 

disease in the US through 2050  (Hebert et al., 2001). 

The financial impact of Alzheimer's disease is predicted to rise 

in line with the disease's anticipated rise in prevalence. The 

National Institute of Aging and the Alzheimer's Association 

(2003) estimated that the present direct and indirect expenses 

of providing for the 4.5 million Americans who have 

Alzheimer's disease are roughly $100 billion annually, 

demonstrating the already significant financial toll that 

Alzheimer's illness imposes on society. The Alzheimer's 

Association commissioned a study that predicted Medicare 

payments for people with Alzheimer's disease will rise by 75% 

from $91 billion in 2005 to $160 billion in the year 2010. 

Medicaid spending for residential dementia care was also 

estimated to be $21 billion in 2005, projected to rise by 14% to 

$24 billion in 2010 (Lives, 2004). The estimated expenditures 

of Alzheimer's disease for Medicare and Medicaid in the 

upcoming 50s are displayed in Fig. 2 (in USD millions). Fig. 3 

shows the projected expenditures of Alzheimer's disease for 

Medicare and Medicaid through 2050 . 

 

Fig. 3.  The projected expenditures of Alzheimer's disease for 

Medicare and Medicaid through 2050  (Al-Shoukry et al., 2020). 

Neuroimaging especially positron emission tomography (PET) 

and magnetic resonance imaging (MRI) has become crucial to 

detecting the structural and functional alterations in the brain 

linked to AD. Tau deposition and cognitive deficiencies are 

linked to brain atrophy, as shown by high-resolution MRI, 

which is a reliable indicator of Alzheimer's disease (AD) and 

its advancement (Frisoni et al., 2010). 

A subset of machine learning called deep learning has 

demonstrated great promise in analyzing medical pictures 

because of its capacity to handle vast volumes of data and 

identify intricate patterns (LeCun, Bengio, & Hinton, 2015). 

Numerous deep learning architectures, each with distinct 

advantages, have been used. Because they can automatically 

extract important features from 2D MRI scans and achieve 

remarkable classification accuracy across a variety of AD 

diagnostic categories, Convolutional Neural Networks (CNNs) 

have been used extensively. However, especially for volumetric 

brain data, traditional CNNs may not be able to fully capture 

the three-dimensional spatial correlations present in MRI scans 

(Payan & Montana, 2015; Sarraf & Tofighi, 2016). 3D 

Convolutional Neural Networks (3D-CNNs) have been 

developed to solve this problem. By examining volumetric data 

and capturing the complex spatial interactions across three 

dimensions, these models go beyond conventional CNN 

frameworks and increase classification accuracy for binary and 

multi-class classifications (Hosseini-Asl et al., 2016; Korolev 

et al., 2017).  

A deep learning model utilizing fluorine-18 

fluorodeoxyglucose (18F-FDG) PET imaging showed 

encouraging results in the early prediction of Alzheimer's 

disease in the study by (Ding et al., 2019). The algorithm 

successfully identified patients an average of 75.8 months 

before a final diagnosis, with an 82% specificity and 100% 

sensitivity. This method demonstrates how PET imaging and 

deep learning algorithms can improve the accuracy of early 

diagnoses, which could lead to better patient outcomes by 

facilitating earlier interventions. Recent developments in 

computer-aided detection of mild cognitive impairment (MCI), 

the precursor to Alzheimer's disease (AD), have showed 

promise in improving diagnostic precision. Conventional 

techniques mostly depend on simple low-level characteristics, 

like mean signal intensities from PET imaging or gray matter 

volumes from MRI. To capture more intricate latent patterns, 

such as non-linear patterns, that are hidden within these low-

level characteristics, Suk and Shen (2013) paper suggests an 

unusual deep learning-based method that makes use of a 

stacked autoencoder.  

Even with deep learning models' achievements, there are still 

issues, like the possibility of overfitting because of the small 

dataset size and the high processing overhead (Arbabshirani et 

al., 2017). The lack of interpretability in these frequently over-

parameterized and extremely complicated data-driven models 

is a major obstacle when using deep learning in AD research. 

Numerous studies have made an effort to enhance 

interpretability from various angles. Simple techniques, such as 

correlation analysis and grouping of neural network features or 

predictions, can accomplish basic interpretation (Zhou et al., 

2023). Lin et al. (2019) confirmed the association between 
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APOE-e4 and brain aging by examining the link between 

prediction error and individual attributes. Ding et al. (2019) 

validated the model's comprehension of AD disease stages by 

performing t-distributed stochastic neighbor embedding (t-

SNE) on neural network-generated features. Here table 1 shows 

the strengths and limitations of several deep learning models 

used in AD detection, sourced from (Razzak et al., 2018).  

Table 1. Summarization of different deep learning models. 

Models Strength Limitation 

AE Able to depict intricate 

and highly nonlinear 

patterns,  

excellent for reducing 

dimensions, simple to 

put into practice, CNN 

initialization is good. 

learns to record as 

much data as 

possible instead of 

as much pertinent 

data. 

RBM able to pick up excellent 

generating models, able 

to identify trends in the 

absence of data 

costly to compute 

during the training 

phase 

DNN Excellent for vector-

based issues, able to 

manage datasets with a 

high sample count, able 

to identify intricate 

nonlinear interactions 

Not ideal for 

images and has a 

sluggish training 

procedure, has 

problems with 

generalization 

DPN Capable of efficiently 

acquiring feature 

representation from tiny 

samples 

performs poorly 

because the 

acquired 

hierarchical 

features from 

various levels are 

simply 

concatenated. 

RNN Excellent for successive 

two-dimensional 

images,  

ideal for long-term 

research 

has problems with 

the training 

process because of 

gradients that 

disappear or 

explode. 

CNN 2D Excellent local 

feature 

performance 

extraction from 

pictures, simple 

to train 

Incapable of 

encoding the 

three-dimensional 

images' spatial 

information 

3D Excellent results 

when extracting 

local features 

from photos, able 

to record 3D data 

from a brain 

scan's 3D volume 

costly to compute 

during the training 

phase 

 

By using a variety of deep learning models CNN, 3D-CNN, 

Multiscale Deep Convolutional Networks, and GCN on a 

standardized dataset obtained from (Helaly et al., 2022), this 

study seeks to close these gaps. We want to determine the best 

strategy for early AD detection and offer insights into the 

clinical application of these cutting-edge approaches by 

comparing these models under comparable circumstances. 

In light of earlier studies, three biomarkers for the diagnosis of 

Alzheimer's disease have been developed globally and 

published [Table/Fig-1] [17–19]. These biomarkers, which are 

derived from CSF, boost the validity of diagnosis by providing 

results that are >95% sensitive and >85% specific 20–23. Table 

2 shows established biomarkers for Alzheimer’s disease. 

Table 2. Established biomarkers for Alzheimer’s disease. 

Amyloid beta Tau protein Phosphorylated 

tau 

Depositions of 

Aβ plaque are 

frequently 

utilized to 

describe AD. 

These 42 amino 

acid peptides 

(Aβ1-42) are 

produced by 

processing 

amyloidogenic 

pathways after 

secretases cleave 

Aβ from big 

APP. These 

peptides then 

accumulate in the 

brain. AD 

patients' CSF 

analysis reveals a 

dramatic 

decrease in Aβ of 

approximately 

<500 pg/ml as 

compared to 

controls, who 

had 794±20 

pg/ml of Aβ. 

 

Another well-

established 

biomarker for AD 

is the inclusion of 

the microtubule-

associated protein 

tau in neurons. In 

AD patients, tau 

protein levels 

significantly 

increase 

exponentially, 

from around 

>450 to >600 

pg/ml (in patients 

aged 51-70 years) 

to <300 pg/ml (in 

those aged 21-50 

years) to nearly 

<500 (in those 

aged >71 years). 

Thus, it is 

proving to be a 

useful indicator 

for prognosis. 

 

Tau protein is 

phosphorylated 

in over 39 

different 

locations in AD. 

In contrast to 

controls, 

position 181 

functions as a 

clear biomarker 

in AD. Tau 

protein 

phosphorylation 

causes neuronal 

dysfunction in 

addition to loss 

of function. 

Other 

noteworthy tau 

proteins that 

have been 

phosphorylated 

are phosphor-

tau-199, -231, -

235, -396, and -

400. 

 

Ref: Pérez et al. 

(2012) 

Ref: Portelius et 

al. (2010) 

Ref: Pérez-

Grijalba et al. 

(2013) 

 

3. Methodology 

3.1. Comparison among Deep-learning Models 

The study incorporates deep learning algorithms to categorize 

Alzheimer's disease (AD), mild cognitive impairment (MCI), 

and normal controls (NC) quantitatively. To evaluate each deep 

learning model's performance in this classification job, a 

comparison analysis was carried out, with a special emphasis 

on the approaches described in the seminal publication by 

Helaly et al. (2022), which focuses on the deep learning 

strategy for early Alzheimer's disease detection. 
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The Alzheimer's Disease Neuroimaging Initiative (ADNI) and 

other publicly accessible neuroimaging datasets served as the 

primary source of secondary data. The dataset included 

structural MRI scans of individuals with mild cognitive 

impairment (MCI), Alzheimer's disease (AD), and normal 

controls (NC).  

22 research publications in all, each offering a different 

perspective on the issue, were examined and mentioned in the 

study. The most common method among these was 

Convolutional Neural Networks (CNNs), which were used in 

14 studies, five of which used 3D CNNs specifically. Graph 

Convolutional Networks (GCNs), Multi-Convolutional 

Networks, CNN-El, the 3D Dense Net model, the 2D-M2IC 

model, the 3D-M2IC model, and a refined VGG19 model were 

among the other models that were investigated. 

Graph Convolutional Networks (GCN) were used to 

comprehend the relationships between various brain regions 

derived from neuroimaging data, Multiscale Deep 

Convolutional Networks were used to improve classification 

performance by evaluating features at different scales, 

Convolutional Neural Networks (CNN) were used to extract 

features from MRI images, and 3D Convolutional Neural 

Networks (3D-CNN) were used to analyze volumetric data and 

capture spatial relationships. The goal of this all-encompassing 

strategy was to increase the categorization accuracy of 

Alzheimer's disease.  

To preserve the subjects' privacy and confidentiality, all used 

data was anonymized. The study's use of medical data 

conformed with ethical standards. The study's step-by-step 

procedure is depicted in the flow chart in Fig. 4.  

 

Fig. 4. Workflow. 

3.2. Early Detection of AD Using Biomarkers  

This study used a retrospective methodology and secondary 

data taken from (Dickerson et al., 2011), which demonstrated 

that MRI biomarkers are effective in predicting AD dementia. 

The investigation will concentrate on finding important MRI 

metrics linked to Alzheimer's disease in cognitively normal 

people. The findings of (Dickerson et al., 2011), which offer a 

comprehensive dataset comprising MRI scans, cognitive tests, 

and demographic data from cognitively normal individuals who 

were then followed for a period to track the development of AD 

dementia, will serve as the primary source of data for this study. 

The study included a subset of cognitively normal adults who 

participated in the original study. The criteria for selection 

were: a) Adults aged 60 years and older, b) Individuals 

classified as cognitively normal (CN) based on baseline Mini-

Mental State Examination (MMSE) scores and other 

neuropsychological assessments, c) Participants with a history 

of neurological disorders or psychiatric conditions that could 

confound cognitive assessment results were excluded. Analysis 

of variance with post hoc pairwise comparisons for continuous 

variables or 2 for proportions was used for group statistical 

comparisons (SPSS 16.0, Chicago, IL).  

4. Result and Discussion 

4.1. Comparative Study among Deep-learning Models 

The results shown in Table 2 highlight important developments 

in the use of deep learning models for the categorization of AD 

and associated cognitive deficits. Convolutional Neural 

Networks (CNNs), 3D CNNs, Graph Convolutional Networks 

(GCNs), and Multiscale Deep Convolutional Networks are 

among the models that show remarkable effectiveness; many of 

them can distinguish between Alzheimer's patients and healthy 

controls with classification accuracies of over 98%. The 

widespread use of magnetic resonance imaging (MRI) as an 

imaging modality illustrates the importance of structural 

imaging in the evaluation of neurodegenerative diseases. Other 

research uses diffusion tensor imaging (DTI) and functional 

MRI (fMRI) to improve diagnostic precision. 

Notably, Sarraf and Tofighi (2016) found that the CNN model 

distinguished between AD and healthy controls (HC) with an 

astounding 98.84% accuracy rate. Similar to this, Ge et al. 

(2019) found that Multiscale Deep Convolutional Networks 

could distinguish AD from HC with a high accuracy of 98.80%. 

Furthermore, the 3D CNN model created by (Basaia et al., 

2019) achieved an exceptional 99.2% classification accuracy 

for AD versus HC. With accuracy levels of 97.11% for AD vs. 

NC and 96.32% for AD vs. EMCI, the 2D-M2IC Model, which 

was first presented by Helaly et al. (2022), likewise showed 

excellent performance. Finally, a multi-class accuracy of 97% 

was achieved by the fine-tuned VGG19 Model in 

differentiating between AD, EMCI, LMCI, and NC.  Table 2  

shows the evaluation of the accuracy of various models for 

Alzheimer's disease identification in Neuroimaging research.

 

Table 2. Evaluation of the Accuracy of Various Models for Alzheimer's Disease Identification in Neuroimaging Research

Approach Dataset Modality Type of 

classification 

Accuracy Reference 

CNN 755 in each 

class (AD, 

ADNI MRI Binary, multi AD vs. EMC vs. HC: 89.47% 

AD vs. HC: 95.39% 

AD vs. MCI: 86.84% 

Payan and 

Montana 

(2015) 

Literat
ure 

Revie
w and 
Data 

Source 
Identifi
cation

Data 
Extract
ion and 
Prepar
ation

Model 
Selecti

on

Evalua
tion 
and 

Compa
re 

Models

Interpr
etation
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MCI, and 

HC) 

HC vs. MCI: 92.11% 

CNN 302 subjects 

(211 AD, 91 

NC) 

ADNI MRI, 

fMRI 

Binary AD vs. HC: 98.84% Sarraf and 

Tofighi 

(2016) 

3D-CNN 210 subjects 

(70 AD, 70 

NC, 70 

MCI) 

CAD-

dementia 

MRI Binary, multi AD vs. EMC vs. HC: 89.1% 

AD + MCI/NC: 90.3% 

AD/NC: 97.6% 

AD/MCI: 95% 

MCI/NC: 90.8% 

Hosseini-

Asl et al. 

(2016) 

3D-CNN 50 AD, 43 

LMCI, 77 

EMCI, 61 

NC 

ADNI MRI Binary AD vs. NC: 80% 

AD vs. EMCI: 63% 

AD vs. LMCI: 59% 

LMCI vs. NC: 61% 

LMCI vs. EMCI: 52% 

EMCI vs. NC: 56% 

Korolev et 

al. (2017) 

CNN 98 AD, 98 

NC 

Local 

hospitals, 

OASIS 

MRI Binary AD/NC: 97.65% Wang et al. 

(2018) 

3D-CNN 53 AD, 228 

MCI, 250 

NC 

ADNI sMRI 

and DTI 

  AD/MCI/NC: 68.9% 

AD/NC: 93.3% 

AD/MCI: 86.7% 

MCI/ NC: 73.3% 

Khvostikov 

et al. (2018) 

3D-CNN 530 subjects 

(185 AD, 

185 MCI, 

160 HC) 

ADNI MRI Multi AD/MCI/NC: 88.31% Sahumbaiev 

et al. (2018) 

CNN AD 192, 184 

NC 

ADNI MRI Binary AD/NC: 99% Spasov et 

al. (2018) 

CNN 35 AD, 30 

aMCI, 40 

NC 

Beijing 

Xuanwu 

Hospital 

DTI, 

fMRI 

Multi AD/aMCI/NC: 92.06% Wang et al. 

(2018) 

CNN 28 AD, 28 

NC 

OASIS MRI Binary AD/NC: 98.51% Khagi et al. 

(2019) 

CNN 150 subjects 

(AD 50, NC 

50, MCI 50) 

ADNI sMRI Multi, binary AD/MCI/NC: 95.73% 

AD vs CN: 99.14% 

AD vs MCI: 99.30% 

MCI vs. CN: 99.22% 

Jin et al. 

(2019) 

GCNs AD 12, NC 

12, EMCI 

12, LMCI 12 

ADNI DTI Multi AD/EMCI/LMCI/NC: 89% Song et al. 

(2019) 

Multiscale 

deep 

convolutional 

networks 

337 subjects 

(198 AD, 

139 NC) 

ADNI MRI Binary AD/NC: 98.80% Ge et al. 

(2019) 

3D CNN 120 subjects, 

30 for each 

class (AD, 

EMCI, 

LMCI, NC) 

ADNI 4D 

FMRI 

Multi-

classification 

AD/EMCI/LMCI/NC: 93% Parmar et 

al. (2020) 

CNN 407 HC, 418 

AD, 280 c-

MCI, 533 

stable MCI 

[s-MCI 

ADNI 3D MRI Binary AD vs. HC: 99.2%, c-MCI vs 

HC: 87.1%, s-MCI vs. 

HC: 76.1%, AD vs. c-

MCI: 75.4%, AD vs. s-

MCI: 85.9%, c-MCI vs. s-

MCI: 75.1% 

Basaia et al. 

(2019) 

CNN-EL 787 subjects 

for (AD, 

MCIc, 

ADNI 3D MRI Binary AD vs. HC: 84%, MCIc vs. 

HC: 79%, MCIc vs. 

MCInc: 62% 

Pan et al. 

(2020) 
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MCInc, HC) 

classes 

3D 

DenseNets 

models 

600 brain 

MRI images 

ADNI 3D MRI Multi AD, EMCI, LMCI, 

NC: 66.67% 

Ruiz et al. 

(2020) 

2D-M2IC 

model 

300 subjects 

(75 AD, 75 

EMCI, 75 

LMCI, 75 

NC) 

Total 

size = 48,000 

MRI images 

ADNI 2D MRI Multi, binary AD vs. NC: 97.11% 

AD vs. EMCI: 96.32% 

AD vs. LMCI: 96.62% 

LMCI vs. NC: 98.10% 

LMCI vs. EMCI: 95.23% 

EMCI vs. NC: 98.39% 

AD/EMCI/LMCI/NC: 93.60% 

Helaly et al. 

(2022) 

3D-M2IC 

model 

3D MRI Multi, binary AD vs. NC: 97.36% 

AD vs. EMCI: 97.07% 

AD vs. LMCI: 97.16% 

LMCI vs. NC: 98.05% 

LMCI vs. EMCI: 96.03% 

EMCI vs. NC: 98.47% 

AD/EMCI/LMCI/NC: 95.17% 

 

fine-tuned 

VGG19 

model 

2D MRI Multi AD/EMCI/LMCI/NC: 97%  

The results are consistent with earlier studies showing deep 

learning algorithms are becoming more and more successful at 

classifying neuroimaging data. The study's high accuracy rates 

are consistent with those of Sarraf and Tofighi (2016) and 

Payan and Montana (2015), who also found that CNN 

architectures significantly improved performance. Nonetheless, 

some models like the refined VGG19 reported 97% accuracy 

for multi-class classification, indicating that, with the right 

optimization, sophisticated architectures may compete with 

more straightforward models. This lends credence to the 

current discussion about whether conventional CNNs or more 

intricate designs are more effective at analyzing medical 

images. 

These findings have significant ramifications for Alzheimer's 

disease detection research and clinical practice. For early 

detection and treatment, which can drastically change the 

course of the disease and management approaches, high 

accuracy in distinguishing among AD, MCI, and NC is 

essential. Additionally, the capacity to accurately categorize 

these stages with neuroimaging can help with patient 

classification for clinical research and customized treatment 

plans. 

In conclusion, there is a lot of promise for correctly 

categorizing Alzheimer's disease phases from neuroimaging 

data through the use of methods based on deep learning, 

especially CNNs and their derivatives.  

4.2. AD Detection Using Biomarkers 

There were relatively minor differences in the two samples' 

demographics in terms of age, gender, and educational 

attainment. Interestingly, compared to the CN-stable groups, 

the CN-AD converter groups' participants were slightly more 

male and older on average. All groups' educational 

backgrounds were similar, preventing educational disparities 

from confusing cognitive results. 

The clinical features draw attention to the different paths taken 

by the CN-stable and CN-AD converter groups. All groups' 

baseline MMSE scores were near the ceiling, suggesting high 

cognitive functioning at first. Table 3 shows clinical 

characteristics and participants' demographics. 

 

Table 3. Clinical Characteristics and Participant Demographics. 

Characteristic MGH Rush 

CN-stable 

(n=25) 

CN-AD Converter 

(n=8) 

CN-stable 

(n=25) 

CN-AD Converter 

(n=7) 

Age 71.2 (4.0) 71.5 (2.1) 76.4 (6.0) 77.7 (4.6) 

Male 9 (36) 5 (63) 3 (12) 4 (57) 

Education 14.9 (2.3) 14.4 (2.6) 15.6 (3.0) 15.3 (3.3) 

APOE (% e4 carriers) 4 (16) 2 (25) 3 (12) 1 (14) 

Baseline MMSE 29.3 (0.7) 28.9 (0.8) 29.1 (1.0) 28.0 (0.6) b 

Baseline Episodic 

Memory  

0.29 (0.7) -0.28 (1.1) c 0.64 (0.5) 0.13 (0.5) d 

Follow-up 10.4 (3.1) 11.1 (2.5) 8.3 (3.1) 7.1 (1.1) 
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Follow-up MMSE  29.4 (0.8) 26.0 (2.9) e 28.8 (2.1) 21.7 (2.7) e 

Follow-up Episodic 

Memory  

0.12 (0.7) -2.3 (1.4) e 0.81 (0.5) -1.27 (0.9) e 

Source Dickerson et al., (2011) 

Abbreviations: AD: Alzheimer's Disease, CN: Cognitively 

Normal, MGH: Massachusetts General Hospital, MMSE: 

Mini-Mental State Examination 

Over a ten-year follow-up period, however, the CN-AD 

converters had significant drops in both their MMSE and 

episodic memory scores, with statistically significant decreases 

that indicated increasing cognitive impairment. This decrease 

highlights the cognitive stability of the CN-stable groups, and 

their scores stayed largely constant. Together with the 

noticeable cognitive loss in the CN-AD converters, these 

baseline similarities offer a useful starting point for 

investigating predicting biomarkers and confirming the 

effectiveness of deep learning models to facilitate early 

Alzheimer's identification. 

4.2.1. Subject Group Mean (SD) Measurements of Regions 

of Interest (in mm) 

Table 2 provides information on the mean (SD) measurements 

of regional cortical thickness for subjects classified as 

cognitively normal (CN) people who did not develop 

Alzheimer's disease (AD) and those who did. Cortical thickness 

in CN-AD converters is significantly reduced in both the Rush 

and MGH (Massachusetts General Hospital) samples, 

especially in crucial regions like the superior frontal gyrus, 

temporal pole, and medial temporal lobe (MTL). Statistical 

significance is shown at p ≤ 0.05. These results highlight the 

connection between neurodegenerative processes linked to the 

advancement of Alzheimer's disease and cortical thinning. It's 

interesting to note that the main visual cortex showed varied 

thinning patterns, indicating that different parts of the brain are 

more or less vulnerable in the initial phases of AD. 

Additionally, the AD-signature summary score supports the 

idea that particular cortical regions play a crucial role in the 

shift between cognitive stability to dementia by validating the 

thinning seen in CN-AD converters. These findings advance 

our knowledge of the neuroanatomical alterations linked to 

Alzheimer's disease and demonstrate the potential value of 

regional cortical thickness as a biomarker for early monitoring 

and detection, which would enable more focused interventions 

and improve diagnostic accuracy in clinical settings. Table 4 

shows a region of interest measurements by topic group mean. 

 

Table 4. Region of interest measurements by topic group mean (SD) (in mm). 

Region of 

Interest 

MGH Rush 

CN-stable  

(n=25) 

CN-AD 

Converter (n=8) 

CN-stable  

(n=25) 

CN-AD 

Converter (n=7) 

MTL 3.28 (0.38) 2.94 (0.43) a 3.37 (0.23) 2.83 (0.39) b 

Temporal pole 3.07 (0.20) 2.77 (0.30) c 3.02 (0.29) 2.73 (0.31) a 

Inferior temporal 2.48 (0.20) 2.39 (0.30) 2.89 (0.26) 2.70 (0.28) 

Angular gyrus 2.48 (0.22) 2.30 (0.25) a 2.50 (0.28) 2.41 (0.23) 

Supramarginal 

gyrus 
2.54 (0.17) 2.38 (0.20) a 2.54 (0.26) 2.38 (0.13) 

Superior parietal 2.17 (0.21) 2.04 (0.19) 2.05 (0.21) 2.09 (0.25) 

Precuneus 2.41 (0.17) 2.25 (0.13) 2.46 (0.22) 2.38 (0.22) 

Middle frontal 2.40 (0.16) 2.24 (0.11) a 2.30 (0.15) 2.20 (0.18) 

Superior frontal 2.58 (0.23) 2.29 (0.19) c 2.68 (0.34) 2.40 (0.19) a 

Primary visual 1.59 (0.12) 1.55 (0.08) 1.56 (0.17) 1.68 (0.25) 

AD-signature 

summary measure 
2.49 (0.14) 2.35 (0.17) a 2.65 (0.19) 2.46 (0.12) a 

Source Dickerson et al., (2011) 

Abbreviations: AD: Alzheimer Disease, CN: 

Cognitively Normal, MGH: Massachusetts General 

Hospital, MTL: Medial Temporal Lobe 

Significance: a p<0.05, b p<0.001, c p<0.005 

5. Conclusion 

A neurological condition called Alzheimer's disease 

(AD) causes memory loss. The need for early Alzheimer 

disease identification is critical because there is no 

approved remedy and it can't be changed. Several 

important findings are shown by comparing different 

deep learning models for the classification of 

Alzheimer's disease (AD), mild cognitive impairment 

(MCI), and normal controls (NC). First off, numerous 

models with accuracy rates above 90% showed that 

deep learning techniques, especially Convolutional 

Neural Networks (CNNs) and 3D Convolutional 

Networks (3D-CNNs), could classify neuroimaging 

data with significant accuracy. This demonstrates the 

models' potential for Alzheimer's disease early 
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diagnosis and detection. Crucially, these models' high 

classification accuracy suggests that they may be useful 

in clinical settings for the early detection of Alzheimer's 

disease, which can have a big impact on patient 

outcomes and treatment effectiveness.  

Additionally, the study showed that the transition from 

cognitively normal (CN) to Alzheimer's disease (AD) 

dementia is linked to particular areas of cortical thinning. 

In comparison to the CN-stable group, both samples 

showed that the CN-AD converter group had notable 

cortical thinning in areas such the superior frontal gyrus, 

temporal pole, and medial temporal lobe (MTL). 

Furthermore, the MGH sample revealed thinning in the 

middle frontal gyrus and inferior parietal lobule, 

indicating that these areas might also play a role in the 

development of AD. These results emphasize how 

crucial it is to keep an eye on regional cortical thickness 

as a possible biomarker for AD early identification and 

treatment.  

Finally, it can be suggested that the early identification 

and diagnosis of Alzheimer's disease (AD) and other 

neurodegenerative diseases may be greatly improved by 

combining biomarkers with deep learning 

algorithms.The findings highlight the need for future 

study to improve these models, integrate more and more 

varied datasets, and investigate hybrid strategies that 

capitalize on the advantages of various architectures. In 

the long run, this will help develop better diagnostic 

instruments for Alzheimer's disease and possibly other 

neurodegenerative conditions. Overall, the work 

highlights the potential of cutting-edge deep learning 

approaches to improve diagnosis accuracy and enable 

prompt therapies, reinforcing their important role in the 

classification of Alzheimer's disease. 
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